Sex Differences in Blood Accumulation of Neurodegenerative-Related Proteins and Antioxidant Responses to Regular Physical Exercise

Aghjayan SL, Lesnovskaya A, Esteban-Cornejo I, Peven JC, Stillman CM, Erickson KI (2021) Aerobic exercise, cardiorespiratory fitness, and the human hippocampus. Hippocampus 31(8):817–844. https://doi.org/10.1002/hipo.23337

Article  PubMed  PubMed Central  Google Scholar 

Ai J, Sun L-H, Che H, Zhang R, Zhang T-Z, Wu W-C, Su X-L, Chen X, Yang G, Li K, Wang N, Ban T, Bao Y-N, Guo F, Niu H-F, Zhu Y-L, Zhu X-Y, Zhao S-G, Yang B-F (2013) MicroRNA-195 protects against dementia induced by chronic brain hypoperfusion via its anti-amyloidogenic effect in rats. J Neurosci 33(9):3989–4001. https://doi.org/10.1523/JNEUROSCI.1997-12.2013

Article  PubMed  PubMed Central  CAS  Google Scholar 

Alizadeh S, Rayner M, Mahmoud MMI, Behm DG (2020) Push-ups vs bench press differences in repetitions and muscle activation between sexes. J Sports Sci Med 19(2):289–297

PubMed  PubMed Central  Google Scholar 

Ardekani BA, Convit A, Bachman AH (2016) Analysis of the MIRIAD data shows sex differences in hippocampal atrophy progression. J Alzheimer’s Disease 50(3):847–857. https://doi.org/10.3233/JAD-150780

Article  Google Scholar 

Baldacci F, Daniele S, Piccarducci R, Giampietri L, Pietrobono D, Giorgi FS, Nicoletti V, Frosini D, Libertini P, Lo Gerfo A, Petrozzi L, Donadio E, Betti L, Trincavelli ML, Siciliano G, Ceravolo R, Tognoni G, Bonuccelli U, Martini C (2019) Potential diagnostic value of red blood cells α-synuclein heteroaggregates in Alzheimer’s disease. Mol Neurobiol 56(9):6451–6459. https://doi.org/10.1007/s12035-019-1531-4

Article  PubMed  CAS  Google Scholar 

Barbour R, Kling K, Anderson JP, Banducci K, Cole T, Diep L, Fox M, Goldstein JM, Soriano F, Seubert P, Chilcote TJ (2008) Red blood cells are the major source of alpha-synuclein in blood. Neurodegener Dis 5(2):55–59. https://doi.org/10.1159/000112832

Article  PubMed  CAS  Google Scholar 

Barha CK, Liu-Ambrose T (2018) Exercise and the aging brain: considerations for sex differences. Brain Plasticity 4(1):53–63. https://doi.org/10.3233/BPL-180067

Article  PubMed  PubMed Central  Google Scholar 

Barha CK, Falck RS, Davis JC, Nagamatsu LS, Liu-Ambrose T (2017) Sex differences in aerobic exercise efficacy to improve cognition: a systematic review and meta-analysis of studies in older rodents. Front Neuroendocrinol 46:86–105. https://doi.org/10.1016/j.yfrne.2017.06.001

Article  PubMed  Google Scholar 

Barha CK, Hsu C-L, ten Brinke L, Liu-Ambrose T (2019) Biological sex: a potential moderator of physical activity efficacy on brain health. Frontiers Aging Neurosci 11:329. https://doi.org/10.3389/fnagi.2019.00329

Article  Google Scholar 

Barnes LL, Wilson RS, Bienias JL, Schneider JA, Evans DA, Bennett DA (2005) Sex differences in the clinical manifestations of Alzheimer disease pathology. Arch Gen Psychiatry 62(6):685. https://doi.org/10.1001/archpsyc.62.6.685

Article  PubMed  Google Scholar 

Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14(5):377–381

Article  PubMed  CAS  Google Scholar 

Bowman RE, Maclusky NJ, Diaz SE, Zrull MC, Luine VN (2006) Aged rats: sex differences and responses to chronic stress. Brain Res 1126(1):156–166. https://doi.org/10.1016/j.brainres.2006.07.047

Article  PubMed  CAS  Google Scholar 

Buchman AS, Boyle PA, Yu L, Shah RC, Wilson RS, Bennett DA (2012) Total daily physical activity and the risk of AD and cognitive decline in older adults. Neurology 78(17):1323–1329. https://doi.org/10.1212/WNL.0b013e3182535d35

Article  PubMed  PubMed Central  CAS  Google Scholar 

Carone M, Asgharian M, Jewell NP (2014) Estimating the lifetime risk of dementia in the Canadian elderly population using cross-sectional cohort survival data. J Am Stat Assoc 109(505):24–35. https://doi.org/10.1080/01621459.2013.859076

Article  PubMed  PubMed Central  CAS  Google Scholar 

Carroll JC, Rosario ER, Kreimer S, Villamagna A, Gentzschein E, Stanczyk FZ, Pike CJ (2010) Sex differences in β-amyloid accumulation in 3xTg-AD mice: role of neonatal sex steroid hormone exposure. Brain Res 1366:233–245. https://doi.org/10.1016/j.brainres.2010.10.009

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cerri S, Mus L, Blandini F (2019) Parkinson’s disease in women and men: what’s the difference? J Parkinson’s Disease 9(3):501–515. https://doi.org/10.3233/JPD-191683

Article  Google Scholar 

Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F (2018) Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol 14:450–464. https://doi.org/10.1016/j.redox.2017.10.014

Article  PubMed  CAS  Google Scholar 

Chen W-W, Zhang X, Huang W-J (2016) Role of neuroinflammation in neurodegenerative diseases (review). Mol Med Rep 13(4):3391–3396. https://doi.org/10.3892/mmr.2016.4948

Article  PubMed  PubMed Central  CAS  Google Scholar 

Congdon EE (2018) Sex differences in autophagy contribute to female vulnerability in Alzheimer’s Disease. Front Neurosci 12:372. https://doi.org/10.3389/fnins.2018.00372

Article  PubMed  PubMed Central  Google Scholar 

Cortes CJ, De Miguel Z (2022) Precision exercise medicine: sex specific differences in immune and CNS responses to physical activity. Brain Plasticity 8(1):65–77. https://doi.org/10.3233/BPL-220139

Article  PubMed  PubMed Central  Google Scholar 

Cruz-Topete D, Dominic P, Stokes KY (2020) Uncovering sex-specific mechanisms of action of testosterone and redox balance. Redox Biol 31:101490. https://doi.org/10.1016/j.redox.2020.101490

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cui JC et al (2022) Sex-specific regulation of β-secretase: a novel estrogen response element (ERE)- dependent mechanism in Alzheimer’s disease. J Neurosci 42(6):1154–1165. https://doi.org/10.1523/JNEUROSCI.0864-20.2021

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cumming DC, Brunsting LA, Strich G, Ries AL, Rebar RW (1986) Reproductive hormone increases in response to acute exercise in men: Medicine & science in sports & exercise. 18(4):369???373. https://doi.org/10.1249/00005768-198608000-00001

D’Andrea S, Spaggiari G, Barbonetti A, Santi D (2020) Endogenous transient doping: physical exercise acutely increases testosterone levels—results from a meta-analysis. J Endocrinol Invest 43(10):1349–1371. https://doi.org/10.1007/s40618-020-01251-3

Article  PubMed  CAS  Google Scholar 

D’Antongiovanni V, Pellegrini C, Antonioli L, Benvenuti L, Di Salvo C, Flori L, Piccarducci R, Daniele S, Martelli A, Calderone V, Martini C, Fornai M (2021) Palmitoylethanolamide counteracts enteric inflammation and bowel motor dysfunctions in a mouse model of Alzheimer’s disease. Front Pharmacol 12:748021. https://doi.org/10.3389/fphar.2021.748021

Article  PubMed  PubMed Central  CAS  Google Scholar 

Daniele S, Costa B, Pietrobono D, Giacomelli C, Iofrida C, Trincavelli ML, Fusi J, Franzoni F, Martini C (2018a) Epigenetic modifications of the α-synuclein gene and relative protein content are affected by ageing and physical exercise in blood from healthy subjects. Oxid Med Cell Longev 2018:3740345. https://doi.org/10.1155/2018/3740345

Article  PubMed  PubMed Central  CAS  Google Scholar 

Daniele S, Frosini D, Pietrobono D, Petrozzi L, Lo Gerfo A, Baldacci F, Fusi J, Giacomelli C, Siciliano G, Trincavelli ML, Franzoni F, Ceravolo R, Martini C, Bonuccelli U (2018b) α-synuclein heterocomplexes with β-amyloid are increased in red blood cells of Parkinson’s disease patients and correlate with disease severity. Front Mol Neurosci 11:53. https://doi.org/10.3389/fnmol.2018.00053

Article  PubMed  PubMed Central  CAS  Google Scholar 

Daniele S, Giacomelli C, Martini C (2018c) Brain ageing and neurodegenerative disease: the role of cellular waste management. Biochem Pharmacol 158:207–216. https://doi.org/10.1016/j.bcp.2018.10.030

Article  PubMed  CAS 

Comments (0)

No login
gif