Junghans RP (1997) Finally! The Brambell receptor (FcRB) Mediator of transmission of immunity and protection from catabolism for IgG. Immunol Res 16:29–57
Article CAS PubMed Google Scholar
Roopenian DC, Akilesh S (2007) FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7(9):715–725
Article CAS PubMed Google Scholar
Rodewald R, Kraehenbuhl J-P (1984) Receptor-mediated transport of IgG. J Cell Biol 99(1 Pt 2):159
Liu L (2018) Pharmacokinetics of monoclonal antibodies and Fc-fusion proteins. Protein Cell 9(1):15–32
Article CAS PubMed Google Scholar
Antohe F, Rădulescu L, Gafencu A, Gheţie V, Simionescu M (2001) Expression of functionally active FcRn and the differentiated bidirectional transport of IgG in human placental endothelial cells. Hum Immunol 62(2):93–105
Article CAS PubMed Google Scholar
Garg A, Balthasar JP (2007) Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn 34:687–709
Article CAS PubMed Google Scholar
Shah DK, Betts AM (2012) Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Pharmacodyn 39(1):67–86
Article CAS PubMed Google Scholar
Jones HM, Zhang Z, Jasper P, Luo H, Avery LB, King LE, Neubert H, Barton HA, Betts AM, Webster R (2019) A physiologically-based pharmacokinetic model for the prediction of monoclonal antibody pharmacokinetics from in vitro data. CPT: Pharmacometrics Syst Pharmacol 8(10):738–747
Glassman PM, Balthasar JP (2019) Physiologically-based modeling of monoclonal antibody pharmacokinetics in drug discovery and development. Drug Metab Pharmacokinet 34(1):3–13
Article CAS PubMed Google Scholar
Liu S, Shah DK (2023) Physiologically based pharmacokinetic modeling to characterize the effect of molecular charge on whole-body disposition of monoclonal antibodies. AAPS J 25(3):48
Article CAS PubMed Google Scholar
Fuhrmann S, Kloft C, Huisinga W (2017) Impact of altered endogenous IgG on unspecific mAb clearance. J Pharmacokinet Pharmacodyn 44:351–374
Article CAS PubMed Google Scholar
Witte WEA, Avery LB, Mackness BC, Van Bogaert T, Park A, Sargentini-Maier ML (2023) Mechanistic incorporation of FcRn binding in plasma and endosomes in a whole body PBPK model for large molecules. J Pharmacokinet Pharmacodyn 50(3):229–241
Patsatzis DG, Wu S, Shah DK, Goussis DA (2022) Algorithmic multiscale analysis for the FcRn mediated regulation of antibody PK in human. Sci Rep 12(1):1–21
Lam S-H, Goussis DA (1989) Understanding complex chemical kinetics with computational singular perturbation. In: Symposium (International) on Combustion, vol. 22, pp. 931–941. Elsevier
Lam SH (1985) Singular perturbation for stiff equations using numerical methods. Honor of Luigi Crocco on his seventy-fifth birthday. Springer, Boston, pp 3–19
Lam SH (1993) Using CSP to understand complex chemical kinetics. Combust Sci Tech 89(5–6):375–404
Lam SH, Goussis DA (1994) The CSP method for simplifying kinetics. Int J Chem Kinet 26(4):461–486
Patsatzis DG, Maris DT, Goussis DA (2016) Asymptotic analysis of a target-mediated drug disposition model: algorithmic and traditional approaches. Bull. Math. Biol. 78:1121–1161
Article CAS PubMed Google Scholar
Prandtl L (1904) Über Flüssigkeitsbewegung bei sehr kleiner Reibung. Proceedings of Third International Mathematical Congress, Heidelberg
Segel LA (1988) On the validity of the steady state assumption of enzyme kinetics. Bull. Math. Biol. 50:579–593
Article CAS PubMed Google Scholar
Peletier LA, Gabrielsson J (2012) Dynamics of target-mediated drug disposition: characteristic profiles and parameter identification. J Pharmacokinet Pharmacodyn 39(5):429–451
Article PubMed PubMed Central Google Scholar
Kristiansen KU (2019) Geometric singular perturbation analysis of a dynamical target mediated drug disposition model. J Math Biol 79(1):187–222
Friedrichs KO (1955) Asymptotic phenomena in mathematical physics. Bull Am Math Soc 61(6):485–504
Van Dyke M (1964) Perturbation methods in fluid mechanics. Academic Press, Stanford
O’Malley RE Jr (1968) Topics in singular perturbations. Adv Math 2(4):365–470
Lin CC, Segel LA (1988) Mathematics applied to deterministic problems in the natural sciences. SIAM, Philadelphia
Verhulst F (2005) Methods and applications of singular perturbations. Springer, New York
Kaplun S, Lagerstrom PA (1957) Asymptotic expansions of Navier-Stokes solutions for small Reynolds numbers. J Math Mech 6:585–593
Fan Y-Y, Farrokhi V, Caiazzo T, Wang M, O’Hara DM, Neubert H (2019) Human FcRn tissue expression profile and half-life in PBMCs. Biomolecules 9(8):373
Article CAS PubMed PubMed Central Google Scholar
Corless RM, Gonnet GH, Hare DEG, Jeffrey DJ, Knuth DE (1996) On the Lambert W function. Adv Comput Math 5:329–359
Espié P, He Y, Koo P, Sickert D, Dupuy C, Chokoté E, Schuler R, Mergentaler H, Ristov J, Milojevic J et al (2020) First-in-human clinical trial to assess pharmacokinetics, pharmacodynamics, safety, and tolerability of iscalimab, an anti-CD40 monoclonal antibody. Am J Transplant. 20(2):463–473
Tang S, Xiao Y (2007) One-compartment model with Michaelis-Menten elimination kinetics and therapeutic window: an analytical approach. J Pharmacokinet Pharmacodyn. 34:807–827
Article CAS PubMed Google Scholar
Gibiansky L, Gibiansky E, Kakkar T, Ma P (2008) Approximations of the target-mediated drug disposition model and identifiability of model parameters. J Pharmacokinet Pharmacodyn. 35:573–591
Article CAS PubMed Google Scholar
Bauer RJ (2019) Nonmem tutorial part i: description of commands and options, with simple examples of population analysis. CPT: Pharmacometrics Syst Pharmacol. 8(8):525–537
Fenichel N (1971) Persistence and smoothness of invariant manifolds for flows. Indiana University Math J 21(3):193–226
Fenichel N (1979) Geometric singular perturbation theory for ordinary differential equations. J Diff Eq. 31(1):53–98
Krupa M, Szmolyan P (2001) Extending geometric singular perturbation theory to nonhyperbolic points–fold and canard points in two dimensions. SIAM J Math Anal. 33(2):286–314
Van Gils S, Krupa M, Szmolyan P (2005) Asymptotic expansions using blow-up. Z. Angew Math. Phys. 56:369–397
Kuehn C et al (2015) Multiple time scale dynamics, vol 191. Springer, Heidelberg
Comments (0)