An asymptotic description of a basic FcRn-regulated clearance mechanism and its implications for PBPK modelling of large antibodies

Junghans RP (1997) Finally! The Brambell receptor (FcRB) Mediator of transmission of immunity and protection from catabolism for IgG. Immunol Res 16:29–57

Article  CAS  PubMed  Google Scholar 

Roopenian DC, Akilesh S (2007) FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7(9):715–725

Article  CAS  PubMed  Google Scholar 

Rodewald R, Kraehenbuhl J-P (1984) Receptor-mediated transport of IgG. J Cell Biol 99(1 Pt 2):159

Article  Google Scholar 

Liu L (2018) Pharmacokinetics of monoclonal antibodies and Fc-fusion proteins. Protein Cell 9(1):15–32

Article  CAS  PubMed  Google Scholar 

Antohe F, Rădulescu L, Gafencu A, Gheţie V, Simionescu M (2001) Expression of functionally active FcRn and the differentiated bidirectional transport of IgG in human placental endothelial cells. Hum Immunol 62(2):93–105

Article  CAS  PubMed  Google Scholar 

Garg A, Balthasar JP (2007) Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn 34:687–709

Article  CAS  PubMed  Google Scholar 

Shah DK, Betts AM (2012) Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Pharmacodyn 39(1):67–86

Article  CAS  PubMed  Google Scholar 

Jones HM, Zhang Z, Jasper P, Luo H, Avery LB, King LE, Neubert H, Barton HA, Betts AM, Webster R (2019) A physiologically-based pharmacokinetic model for the prediction of monoclonal antibody pharmacokinetics from in vitro data. CPT: Pharmacometrics Syst Pharmacol 8(10):738–747

CAS  PubMed  Google Scholar 

Glassman PM, Balthasar JP (2019) Physiologically-based modeling of monoclonal antibody pharmacokinetics in drug discovery and development. Drug Metab Pharmacokinet 34(1):3–13

Article  CAS  PubMed  Google Scholar 

Liu S, Shah DK (2023) Physiologically based pharmacokinetic modeling to characterize the effect of molecular charge on whole-body disposition of monoclonal antibodies. AAPS J 25(3):48

Article  CAS  PubMed  Google Scholar 

Fuhrmann S, Kloft C, Huisinga W (2017) Impact of altered endogenous IgG on unspecific mAb clearance. J Pharmacokinet Pharmacodyn 44:351–374

Article  CAS  PubMed  Google Scholar 

Witte WEA, Avery LB, Mackness BC, Van Bogaert T, Park A, Sargentini-Maier ML (2023) Mechanistic incorporation of FcRn binding in plasma and endosomes in a whole body PBPK model for large molecules. J Pharmacokinet Pharmacodyn 50(3):229–241

Article  PubMed  Google Scholar 

Patsatzis DG, Wu S, Shah DK, Goussis DA (2022) Algorithmic multiscale analysis for the FcRn mediated regulation of antibody PK in human. Sci Rep 12(1):1–21

Article  Google Scholar 

Lam S-H, Goussis DA (1989) Understanding complex chemical kinetics with computational singular perturbation. In: Symposium (International) on Combustion, vol. 22, pp. 931–941. Elsevier

Lam SH (1985) Singular perturbation for stiff equations using numerical methods. Honor of Luigi Crocco on his seventy-fifth birthday. Springer, Boston, pp 3–19

Google Scholar 

Lam SH (1993) Using CSP to understand complex chemical kinetics. Combust Sci Tech 89(5–6):375–404

Article  CAS  Google Scholar 

Lam SH, Goussis DA (1994) The CSP method for simplifying kinetics. Int J Chem Kinet 26(4):461–486

Article  CAS  Google Scholar 

Patsatzis DG, Maris DT, Goussis DA (2016) Asymptotic analysis of a target-mediated drug disposition model: algorithmic and traditional approaches. Bull. Math. Biol. 78:1121–1161

Article  CAS  PubMed  Google Scholar 

Prandtl L (1904) Über Flüssigkeitsbewegung bei sehr kleiner Reibung. Proceedings of Third International Mathematical Congress, Heidelberg

Segel LA (1988) On the validity of the steady state assumption of enzyme kinetics. Bull. Math. Biol. 50:579–593

Article  CAS  PubMed  Google Scholar 

Peletier LA, Gabrielsson J (2012) Dynamics of target-mediated drug disposition: characteristic profiles and parameter identification. J Pharmacokinet Pharmacodyn 39(5):429–451

Article  PubMed  PubMed Central  Google Scholar 

Kristiansen KU (2019) Geometric singular perturbation analysis of a dynamical target mediated drug disposition model. J Math Biol 79(1):187–222

Article  PubMed  Google Scholar 

Friedrichs KO (1955) Asymptotic phenomena in mathematical physics. Bull Am Math Soc 61(6):485–504

Article  Google Scholar 

Van Dyke M (1964) Perturbation methods in fluid mechanics. Academic Press, Stanford

Google Scholar 

O’Malley RE Jr (1968) Topics in singular perturbations. Adv Math 2(4):365–470

Article  Google Scholar 

Lin CC, Segel LA (1988) Mathematics applied to deterministic problems in the natural sciences. SIAM, Philadelphia

Book  Google Scholar 

Verhulst F (2005) Methods and applications of singular perturbations. Springer, New York

Book  Google Scholar 

Kaplun S, Lagerstrom PA (1957) Asymptotic expansions of Navier-Stokes solutions for small Reynolds numbers. J Math Mech 6:585–593

Google Scholar 

Fan Y-Y, Farrokhi V, Caiazzo T, Wang M, O’Hara DM, Neubert H (2019) Human FcRn tissue expression profile and half-life in PBMCs. Biomolecules 9(8):373

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corless RM, Gonnet GH, Hare DEG, Jeffrey DJ, Knuth DE (1996) On the Lambert W function. Adv Comput Math 5:329–359

Article  Google Scholar 

Espié P, He Y, Koo P, Sickert D, Dupuy C, Chokoté E, Schuler R, Mergentaler H, Ristov J, Milojevic J et al (2020) First-in-human clinical trial to assess pharmacokinetics, pharmacodynamics, safety, and tolerability of iscalimab, an anti-CD40 monoclonal antibody. Am J Transplant. 20(2):463–473

Article  PubMed  Google Scholar 

Tang S, Xiao Y (2007) One-compartment model with Michaelis-Menten elimination kinetics and therapeutic window: an analytical approach. J Pharmacokinet Pharmacodyn. 34:807–827

Article  CAS  PubMed  Google Scholar 

Gibiansky L, Gibiansky E, Kakkar T, Ma P (2008) Approximations of the target-mediated drug disposition model and identifiability of model parameters. J Pharmacokinet Pharmacodyn. 35:573–591

Article  CAS  PubMed  Google Scholar 

Bauer RJ (2019) Nonmem tutorial part i: description of commands and options, with simple examples of population analysis. CPT: Pharmacometrics Syst Pharmacol. 8(8):525–537

CAS  PubMed  Google Scholar 

Fenichel N (1971) Persistence and smoothness of invariant manifolds for flows. Indiana University Math J 21(3):193–226

Article  Google Scholar 

Fenichel N (1979) Geometric singular perturbation theory for ordinary differential equations. J Diff Eq. 31(1):53–98

Article  Google Scholar 

Krupa M, Szmolyan P (2001) Extending geometric singular perturbation theory to nonhyperbolic points–fold and canard points in two dimensions. SIAM J Math Anal. 33(2):286–314

Article  Google Scholar 

Van Gils S, Krupa M, Szmolyan P (2005) Asymptotic expansions using blow-up. Z. Angew Math. Phys. 56:369–397

Article  Google Scholar 

Kuehn C et al (2015) Multiple time scale dynamics, vol 191. Springer, Heidelberg

Google Scholar 

Comments (0)

No login
gif