A century of exercise physiology: effects of muscle contraction and exercise on skeletal muscle Na+,K+-ATPase, Na+ and K+ ions, and on plasma K+ concentration—historical developments

Aagaard NK, Andersen H, Vilstrup H, Clausen T, Jakobsen J, Dorup I (2003) Decreased muscle strength and contents of Mg and Na, K-pumps in chronic alcoholics occur independently of liver cirrhosis. J Intern Med 253(3):359–366

Article  CAS  Google Scholar 

Ahlborg B, Bergström J, Ekelund L, Hultman E (1967) Muscle glycogen and muscle electrolytes during prolonged physical exercise. Acta Physiol Scand 70:129–142

Article  CAS  Google Scholar 

Ahmed K, Judah JD (1964) Preparation of lipoproteins containing cation-dependent ATPase. Biochim Biophys Acta 93:603–613

Article  CAS  Google Scholar 

Albers RW, Koval GJ (1966) Sodium-potassium-activated adenosine triphosphatase of electrophorus electric organ. 3. An associated potassium-activated neutral phosphatase. J Biol Chem 241(8):1896–1898

Article  CAS  Google Scholar 

Al-Khalili L, Yu M, Chibalin AV (2003) Na+, K+-ATPase trafficking in skeletal muscle: insulin stimulates translocation of both a1- and a2-subunit isoforms. FEBS Lett 536(1–3):198–202

Article  CAS  Google Scholar 

Altarawneh M, Petersen AC, Smith R, Rouffet DM, Billaut F, Perry BD, Wyckelsma VL, Tobin A, McKenna MJ (2016) Salbutamol effects on systemic potassium dynamics during and following intense continuous and intermittent exercise. Eur J Appl Physiol 116:2389–2399

Article  CAS  Google Scholar 

Altarawneh MM, Petersen AC, Farr T, Garnham A, Broatch JR, Halson S, Bishop DJ, McKenna MJ (2020) Resistance training upregulates skeletal muscle Na+, K+-ATPase content, with elevations in both α1 and α2, but not β isoforms. Eur J Appl Physiol 120(8):1777–1785. https://doi.org/10.1007/s00421-020-04408-3

Article  CAS  Google Scholar 

Alvestrand A, Wahren J, Smith D, DeFronzo RA (1984) Insulin-mediated potassium uptake is normal in uremic and healthy subjects. Am J Physiol 246(2 Pt 1):E174-180

CAS  Google Scholar 

Amann M, Blain GM, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA (2010) Group III and IV muscle afferents contribute to ventilatory and cardiovascular response to rhythmic exercise in humans. J Appl Physiol 109(4):966–976. https://doi.org/10.1152/japplphysiol.00462.2010

Article  Google Scholar 

Ammar T, Lin W, Higgins A, Hayward LJ, Renaud JM (2015) Understanding the physiology of the asymptomatic diaphragm of the M1592V hyperkalemic periodic paralysis mouse. J Gen Physiol 146(6):509–525. https://doi.org/10.1085/jgp.201511476

Article  CAS  Google Scholar 

Andres R, Baltzan MA, Cader G, Zierler KL (1962) Effect of insulin on carbohydrate metabolism and on potassium in the forearm of man. J Clin Invest 41(1):108–115. https://doi.org/10.1172/jci104452

Article  CAS  Google Scholar 

Ariyasu RG, Deerinck TJ, Levinson SR, Ellisman MH (1987) Distribution of (Na+ + K+) ATPase and sodium channels in skeletal muscle and electroplax. J Neurocytol 16(4):511–522. https://doi.org/10.1007/bf01668505

Article  CAS  Google Scholar 

Askari A, Koyal D (1968) Different oligomycin sensitivities of the Na+ + K+-activated adenosinetriphosphatase and its partial reactions. Biochem Biophys Res Commun 32(2):227–232

Article  CAS  Google Scholar 

Åstrand PO, Saltin B (1964) Plasma and red cell volume after prolonged severe exercise. Japplied Physiol 19(5):829–832

Google Scholar 

Atanasovska T, Petersen AC, Rouffet DM, Billaut F, Ng I, McKenna MJ (2014) Plasma K+ dynamics and implications during and following intense rowing exercise. J Appl Physiol 117:60–68. https://doi.org/10.1152/japplphysiol.01027.2013

Article  CAS  Google Scholar 

Atanasovska T, Smith R, Graff C, Tran CT, Melgaard J, Kanters JK, Petersen AC, Tobin A, Kjeldsen KP, McKenna MJ (2018) Protection against severe hypokalemia but impaired cardiac repolarization after intense rowing exercise in healthy humans receiving salbutamol. J Appl Physiol 125(2):624–633. https://doi.org/10.1152/japplphysiol.00680.2017

Article  CAS  Google Scholar 

Aughey RJ, Clark SA, Gore CJ, Townsend NE, Hahn AG, Kinsman TA, Goodman C, Chow CM, Martin DT, Hawley JA, McKenna MJ (2006) Interspersed normoxia during live high, train low interventions reverses an early reduction in muscle Na+, K+-ATPase activity in well-trained athletes. Eur J Appl Physiol 98(3):299–309

Article  CAS  Google Scholar 

Aughey RJ, Murphy KT, Clark SA, Garnham AP, Snow RJ, Cameron-Smith D, Hawley JA, McKenna MJ (2007) Muscle Na+, K+,-ATPase activity and isoform adaptations to intense interval exercise and training in well-trained athletes. J Appl Physiol 103(1):39–47. https://doi.org/10.1152/japplphysiol.00236.2006

Article  CAS  Google Scholar 

Balog EM, Fitts RH (1996) Effects of fatiguing stimulation on intracellular Na+ and K+ in frog skeletal muscle. J Appl Physiol 81(2):679–685

Article  CAS  Google Scholar 

Band DM, Linton RA (1986) The effect of potassium on carotid body chemoreceptor discharge in the anaesthetized cat. J Physiol 381:39–47

Article  CAS  Google Scholar 

Bangsbo J, Graham T, Johansen L, Strange S, Christensen C, Saltin B (1992a) Elevated muscle acidity and energy production during exhaustive exercise in humans. Am J Physiol 263(4 Pt 2):R891-899

CAS  Google Scholar 

Bangsbo J, Graham TE, Kiens B, Saltin B (1992b) Elevated muscle glycogen and anaerobic energy production during exhaustive exercise in man. J Physiol 451(1):205–227

Article  CAS  Google Scholar 

Bangsbo J, Madsen K, Kiens B, Richter EA (1996) Effect of muscle acidity on muscle metabolism and fatigue during intense exercise in man. J Physiol 495(Pt 2):587–596

Article  CAS  Google Scholar 

Bangsbo J, Gunnarsson TP, Wendell J, Nybo L, Thomassen M (2009) Reduced volume and increased training intensity elevate muscle Na+-K+ pump alpha2-subunit expression as well as short- and long-term work capacity in humans. J Appl Physiol 107(6):1771–1780. https://doi.org/10.1152/japplphysiol.00358.2009

Article  CAS  Google Scholar 

Bansal N, Szczepaniak L, Ternullo D, Fleckenstein JL, Malloy CR (2000) Effect of exercise on 23Na MRI and relaxation characteristics of the human calf muscle. J Magn Reson Imaging 11(5):532–538. https://doi.org/10.1002/(SICI)1522-2586(200005)11:5%3c532::AID-JMRI9%3e3.0.CO;2-#

Article  CAS  Google Scholar 

Bavendiek U, Aguirre Davila L, Koch A, Bauersachs J (2017) Assumption versus evidence: the case of digoxin in atrial fibrillation and heart failure. Eur Heart J 38(27):2095–2099. https://doi.org/10.1093/eurheartj/ehw577

Article  CAS  Google Scholar 

Benders AG, van Kuppevelt TH, Oosterhof A, Wevers RA, Veerkamp JH (1992) Adenosine triphosphatases during maturation of cultured human skeletal muscle cells and in adult human muscle. Biochim Biophys Acta 1112(1):89–98

Article  CAS  Google Scholar 

Benziane B, Chibalin AV (2008) Skeletal muscle sodium pump regulation: a translocation paradigm. Am J Physiol Endocrinol Metab. https://doi.org/10.1152/ajpendo.90261.2008

Article  Google Scholar 

Benziane B, Widegren U, Pirkmajer S, Henriksson J, Stepto NK, Chibalin AV (2011) Effect of exercise and training on phospholemman phosphorylation in human skeletal muscle. Am J Physiol Endocrinol Metab 301(3):E456-466. https://doi.org/10.1152/ajpendo.00533.2010

Article  CAS  Google Scholar 

Bergström J (1962) Muscle electrolytes in man. Scand J Clin Lab Investig 14(Supplementum 68):1–113

Google Scholar 

Bergström J, Hultman E (1966) The effect of exercise on muscle glycogen and electrolytes in normals. Scand J Clin Lab Invest 18(1):16–20. https://doi.org/10.3109/00365516609065602

Article  Google Scholar 

Bergström J, Guarnieri G, Hultman E (1971) Carbohydrate metabolism and electrolyte changes in human muscle tissue during heavy work. J Appl Physiol 30(1):122–125

Article  Google Scholar 

Bia MJ, DeFronzo RA (1981) Extrarenal potassium homeostasis. Am J Physiol 240(4):F257-268

CAS  Google Scholar 

Bibert S, Roy S, Schaer D, Horisberger JD, Geering K (2008) Phosphorylation of phospholemman (FXYD1) by protein kinases A and C modulates distinct Na, K-ATPase isozymes. J Biol Chem 283(1):476–486. https://doi.org/10.1074/jbc.M705830200

Article  CAS  Google Scholar 

Biondo ED, Spontarelli K, Ababioh G, Méndez L, Artigas P (2021) Diseases caused by mutations in the Na(+)/K(+) pump α1 gene ATP1A1. A J Physiol Cell Physiol 321(2):C394-c408. https://doi.org/10.1152/ajpcell.00059.2021

Article  CAS  Google Scholar 

Blanco G, Mercer RW (1998) Isozymes of the Na+, K+,-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275(5 Pt 2):F633–650

CAS  Google Scholar 

Blaustein MP, Gottlieb SS, Hamlyn JM, Leenen FHH (2022) Whither digitalis? What we can still learn from cardiotonic steroids about heart failure and hypertension. Am J Physiol Heart Circ Physiol 323(6):H1281-h1295. https://doi.org/10.1152/ajpheart.00362.2022

Article  CAS  Google Scholar 

Boning D, Tibes U, Schweigart U (1976) Red cell hemoglobin, hydrogen ion and electrolyte concentrations during exercise in trained and untrained subjects. Eur J Appl Physiol Occup Physiol 35(4):243–249

Article  CAS  Google Scholar 

Bonting SL, Caravaggio LL (1963) Studies on sodium-potassium-activated adenosinetriphosphatase. V. Correlation of enzyme activity with cation flux in six tissues. Arch Biochem Biophys 101(1):37–46. https://doi.org/10.1016/0003-9861(63)90531-9

Article  CAS  Google Scholar 

Bonting SL, Simon KA, Hawkins NM (1961) Studies on sodium-potassium-activated adenosine triphosphatase: I. Quantitative distribution in several tissues of the cat. Arch Biochem Biophys 95(3):416–423. https://doi.org/10.1016/0003-9861(61)90170-9

Article  CAS  Google Scholar 

Bonting SL, Caravaggio LL, Hawkins NM (1962) Studies on sodium-potassium-activated adenosinetriphosphatase. IV. Correlation with cation transport sensitive to cardiac glycosides. Arch Biochem Biophys 98(3):413–419. https://doi.org/10.1016/0003-9861(62)90206-0

Article  CAS  Google Scholar 

Boon H, Kostovski E, Pirkmajer S, Song M, Lubarski I, Iversen PO, Hjel

Comments (0)

No login
gif