Ahmad M, Perfect J (2018) Tolerability profile of the current antifungal armoury. J Antimicrob Chemother. 73:i26–i32. https://doi.org/10.1093/jac/dkx446
Alves IA, Bandeira LA, Mario DAN, Denardi LB, Neves LV, Santurio JM, Alves SH (2012) Effects of antifungal agents alone and in combination against Candida glabrata strains susceptible or resistant to fluconazole. Mycopathologia 174:215–221. https://doi.org/10.1007/s11046-012-9538-7
Article CAS PubMed Google Scholar
Bastos Silva JP, Maués Noronha Peres AR, Portal Paixao T, Silva ASB, Baetas AC, Barbosa WLR, Monteiro MC, Andrade MA (2007) Antifungal activity of hydroalcoholic extract of Chrysobalanus icaco against oral clinical isolates of Candida species. Farmacognosy Res 9:96–100. https://doi.org/10.4103/0974-8490.199772
Calderón ÁI, Romero LI, Ortega-Barría E, Solís PN, Zacchino S, Gimenez A, Pinzón R, Cáceres A, Tamayo G, Guerra C, Espinosa A, Correa M, Gupta MP (2010) Screening of Latin American plants for antiparasitic activities against malaria, Chagas disease, and leishmaniasis. Pharm Biol 48:545–553. https://doi.org/10.3109/13880200903193344
Chen X, Ren B, Chen M, Liu MX, Ren W, Wang QX, Zhang LX, Yan GY (2014) ASDCD: antifungal synergistic drug combination database. PloS One 9:e86499. https://doi.org/10.1371/journal.pone.0086499
Article CAS PubMed PubMed Central Google Scholar
Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58:621–681. https://doi.org/10.1124/pr.58.3.10
Article CAS PubMed Google Scholar
CLSI (2017) Reference method for broth dilution antifungal susceptibility testing of yeasts, 4th Ed. Approv. Stand. M27-Ed4. Clinical and Laboratory Standards Institute, Wayne
Cordisco E, Sortino M, Svetaz L (2019) Antifungal activity of traditional medicinal plants from Argentina: effect of their combination with antifungal drugs. Curr Tradit Med 5:75–95. https://doi.org/10.2174/2215083804666181002111456
Elkomy MH, El Menshawe SF, Abou-Taleb HA, Elkarmalawy MH (2017) Loratadine bioavailability via buccal transferosomal gel: formulation, statistical optimization, in vitro/in vivo characterization, and pharmacokinetics in human volunteers. Drug Deliv 24:781–791. https://doi.org/10.1080/10717544.2017.1321061
Article CAS PubMed PubMed Central Google Scholar
Enioutina EY, Teng L, Fateeva TV, Brown JCS, Job KM, Bortnikova VV, Krepkova LV, Gubarev MI, Sherwin CMT (2017) Phytotherapy as an alternative to conventional antimicrobials: combating microbial resistance. Expert Rev Clin Pharmacol 10:1203–1214. https://doi.org/10.1080/17512433.2017.1371591
Article CAS PubMed Google Scholar
Fadil M, Fikri-Benbrahim K, Rachiq S, Ihssane B, Lebrazi S, Chraibi M, Haloui T, Farah A (2018) Combined treatment of Thymus vulgaris L., Rosmarinus officinalis L. and Myrtus communis L. essential oils against Salmonella typhimurium: optimization of antibacterial activity by mixture design methodology. Eur J Pharm Biopharm 126:211–220. https://doi.org/10.1016/j.ejpb.2017.06.002
Article CAS PubMed Google Scholar
Ferré J, Rius FX (2002) Introducción al diseño estadístico de experimentos. Universitat Rovira i Virgili, Técnicas de laboratorio, Barcelona, pp 648–653
Hamoud R, Reichling J, Wink M (2015) Synergistic antibacterial activity of the combination of the alkaloid sanguinarine with EDTA and the antibiotic streptomycin against multidrug resistant bacteria. J Pharm Pharmacol 67:264–273. https://doi.org/10.1111/jphp.12326
Article CAS PubMed Google Scholar
Hassanzadeh-Taheri M, Hassanpour-Fard M, Doostabadi M, Moodi H, Vazifeshenas-Darmiyan K, Hosseini M (2018) Co-administration effects of aqueous extract of turnip leaf and metformin in diabetic rats. J Tradit Complement Med 8:178–183. https://doi.org/10.1016/j.jtcme.2017.05.010
Isla MI, Moreno MA, Nuño G, Rodriguez F, Carabajal A, Alberto MR, Zampini IC (2016) Zuccagnia punctata: a review of its traditional uses, phytochemistry, pharmacology and toxicology. Nat Prod Commun 11:1749–1755. https://doi.org/10.1177/1934578X1601101129
Kolouchová I, Maťátková O, Paldrychová M, Kodeš Z, Kvasničková E, Sigler K, Čejková A, Šmidrkal J, Demnerová K, Masák J (2018) Resveratrol, pterostilbene, and baicalein: plant-derived anti-biofilm agents. Folia Microbiol 63:261–272. https://doi.org/10.1007/s12223-017-0549-0
Kusuma IW, Itoh K, Tachibana S (2005) Antifungal activities against plant pathogenic fungi of flavonoids isolated from amboyna wood. Pak J Biol Sci 8:136–140
Li DD, Zhao LX, Mylonakis E, Hu GH, Zou Y, Huang TK, Yan L, Wang Y, Jiang YY (2014) In vitro and in vivo activities of pterostilbene against Candida albicans biofilms. Antimicrob Agents Chemother 58:2344–2355. https://doi.org/10.1128/AAC.01583-13
Article CAS PubMed PubMed Central Google Scholar
Liang Y, Duan H, Zhang P, Han H, Gao F, Li Y, Xu Z (2020) Extraction and isolation of the active ingredients of dandelion and its antifungal activity against Candida albicans. Mol Med Rep 21:229–239. https://doi.org/10.3892/mmr.2019.10797
Article CAS PubMed Google Scholar
Ling X, Huang Z, Wang J, Xie J, Feng M, Chen Y, Abbas F, Tu J, Wu J, Sun C (2016) Development of an itraconazole encapsulated polymeric nanoparticle platform for effective antifungal therapy. J Mater Chem B 4:1787–1796. https://doi.org/10.1039/c5tb02453f
Article CAS PubMed Google Scholar
Lou Z, Wang H, Zhu S, Ma C, Wang Z (2011) Antibacterial activity and mechanism of action of chlorogenic acid. J Food Sci 76:M398–M403. https://doi.org/10.1111/j.1750-3841.2011.02213.x
Article CAS PubMed Google Scholar
Martinez-Irujo JJ, Villahermosa ML, Alberdi E, Santiago E (1996) A checkerboard method to evaluate interactions between drugs. Biochem Pharmacol 51:635–644. https://doi.org/10.1016/S0006-2952(95)02230-9
Article CAS PubMed Google Scholar
Morais-Braga MFB, Sales DL, Carneiro JNP, Machado AJT, dos Santos ATL, de Freitas MA, Bezerra Martins GMA, FigueiredoLeite N, de Matos YMLS, Tintino SR, Souza DSL, Menezes IRA, Ribeiro-Filho J, Costa JGM, Coutinho HDM (2016) Psidium guajava L. and Psidium brownianum Mart ex DC.: chemical composition and anti–Candida effect in association with fluconazole. Microb Pathog 95:200–207. https://doi.org/10.1016/j.micpath.2016.04.013
Article CAS PubMed Google Scholar
Ohadoma SC (2016) In-vitro evaluation of co-administration of chloroform leaf extract of Chromolaena odorata on the antimicrobial activity of clindamycin and itraconazole. Eur J Pharm Med Res 3:540–544
Oliveira GTD, Ferreira JMS, Rosa LH, Siqueira EP, Johann S, Lima LARS (2014) In vitro antifungal activities of leaf extracts of Lippia alba (Verbenaceae) against clinically important yeast species. Rev Soc Bras Med Trop 47:247–250. https://doi.org/10.1590/0037-8682-0008-2013
Ouedrhiri W, Balouiri M, Bouhdid S, Moja S, Chahdi FO, Taleb M, Greche H (2016) Mixture design of Origanum compactum, Origanum majorana and Thymus serpyllum essential oils: optimization of their antibacterial effect. Ind Crops Prod 89:1–9. https://doi.org/10.1016/j.indcrop.2016.04.049
Parast AR, Ghahfarokhi MS, Yadegari MH, Abyaneh MR (2009) Antifungal effect of Allium sativum either individually or in combination with fluconazole, itraconazole and ketoconazole against pathogenic yeasts. J Gorgan Univ Med Sci 11:49–56
Rashed K, Ćirić A, Glamočlija J, Soković M (2014) Antibacterial and antifungal activities of methanol extract and phenolic compounds from Diospyros virginiana L. Ind Crops Prod 59:210–215. https://doi.org/10.1016/j.indcrop.2014.05.021
Rhimi W, Aneke C, Annoscia G, Otranto D, Boekhout T, Cafarchia C (2020) Effect of chlorogenic and gallic acids combined with azoles on antifungal susceptibility and virulence of multidrug-resistant Candida spp. and Malassezia furfur isolates. Med Mycol 58:1091–1101. https://doi.org/10.1093/mmy/myaa010
Article CAS PubMed Google Scholar
Rocha da Silva C, de Andrade Neto JB, de Sousa Campos R, Figueiredo NS, Sampaio LS, Ferreira Magalhães HI, Cavalcanti BC, Gaspar DM, de Andrade GM, Pampolha Lima IS, de Barros Viana GS, de Moraes MO, Pinto Lobo MD, Grangeiro TB, NobreJúnior HV (2014) Synergistic effect of the flavonoid catechin, quercetin, or epigallocatechin gallate with fluconazole induces apoptosis in Candida tropicalis resistant to fluconazole. Antimicrob Agents Chemother 58:1468–1478. https://doi.org/10.1128/AAC.00651-13
Sardi JDCO, Gullo FP, Freires IA, de Souza Pitangui N, Segalla MP, Fusco-Almeida AM, Rosalen PL, Regasini LO, Mendes-Giannini MJS (2016) Synthesis, antifungal activity of caffeic acid derivative esters, and their synergism with fluconazole and nystatin against Candida spp. Diagn Microbiol Infect Dis 86:387–391. https://doi.org/10.1016/j.diagmicrobio.2016.08.002
Article CAS PubMed Google Scholar
Shao J, Zhang MX, Wang TM, Li Y, Wang CZ (2016) The roles of CDR1, CDR2, and MDR1 in kaempferol-induced suppression with fluconazole-resistant Candida albicans. Pharm Biol 54:984–992. https://doi.org/10.3109/13880209.2015.1091483
Article CAS PubMed Google Scholar
Simirgiotis MJ, Quispe C, Areche C, Sepúlveda B (2016) Phenolic compounds in Chilean mistletoe (Quintral, Tristerix tetrandus) analyzed by UHPLC–Q/Orbitrap/MS/MS and its antioxidant properties. Molecules 21:245. https://doi.org/10.3390/molecules21030245
Article CAS PubMed PubMed Central Google Scholar
Simirgiotis MJ, Quispe C, Bórquez J, Schmeda-Hirschmann G, Avendaño M, Sepúlveda B, Winterhalter P (2016) Fast high resolution Orbitrap MS fingerprinting of the resin of Heliotropium taltalense Phil. from the Atacama Desert. Ind Crop Prod 85:159–166. https://doi.org/10.1016/j.indcrop.2016.02.054
Singh BN, Upreti DK, Singh BR, Pandey G, Verma S, Roy S, Naqvi AH, Rawat AKS (2015) Quercetin sensitizes fluconazole-resistant Candida albicans to induce apoptotic cell death by modu
Comments (0)