Lee RM (1995) Morphology of cerebral arteries. Pharmacol Ther 66(1):149–173
Article CAS PubMed Google Scholar
Perosa V, Priester A, Ziegler G, Cardenas-Blanco A, Dobisch L, Spallazzi M, Assmann A, Maass A, Speck O, Oltmer J, Heinze H-J, Schreiber S, Düzel E (2020) Hippocampal vascular reserve associated with cognitive performance and hippocampal volume. Brain 143(2):622–634
Article PubMed PubMed Central Google Scholar
Linn F, Rinkel G, Algra A, Van Gijn J (1996) Incidence of subarachnoid hemorrhage: role of region, year, and rate of computed tomography: a metaanalysis. Stroke 27(4):625–629
Article CAS PubMed Google Scholar
Cebral JR, Castro MA, Soto O, Löhner R, Alperin N (2003) Blood-flow models of the Circle of Willis from magnetic resonance data. J Eng Math 47(3):369–386
Cebral JR, Vazquez M, Sforza DM, Houzeaux G, Tateshima S, Scrivano E, Bleise C, Lylyk P, Putman CM (2015) Analysis of hemodynamics and wall mechanics at sites of cerebral aneurysm rupture. J NeuroIntervent Surg 7(7):530–536
Janiga G, Berg P, Sugiyama S, Kono K, Steinman D (2015) The computational fluid dynamics rupture challenge 2013—Phase I: prediction of rupture status in intracranial aneurysms. Am J Neuroradiol 36(3):530–536
Article CAS PubMed PubMed Central Google Scholar
Berg P, Saalfeld S, Voss S, Beuing O, Janiga G (2019) A review on the reliability of hemodynamic modeling in intracranial aneurysms: Why computational fluid dynamics alone cannot solve the equation. Neurosurg Focus 47(1):E15
Chnafa C, Brina O, Pereira V, Steinman D (2018) Better than nothing: a rational approach for minimizing the impact of outflow strategy on cerebrovascular simulations. Am J Neuroradiol 39(2):337–343
Article CAS PubMed PubMed Central Google Scholar
Saalfeld S, Voss S, Beuing O, Preim B, Berg P (2019) Flow-splitting-based computation of outlet boundary conditions for improved cerebrovascular simulation in multiple intracranial aneurysms. Int J Comput Assist Radiol Surg 14(10):1805–1813
Valen-Sendstad K, Piccinelli M, KrishnankuttyRema R, Steinman D (2015) Estimation of inlet flow rates for image-based aneurysm CFD models: Where and how to begin? Ann Biomed Eng 43(6):1422–1431
Murray CD (1926) The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc Natl Acad Sci 12(3):207–214
Article CAS PubMed PubMed Central Google Scholar
Alnaes MS, Isaksen J, Mardal KA, Romner B, Morgan MK, Ingebrigtsen T (2007) Computation of hemodynamics in the circle of Willis. Stroke 38:2500–2505
Ren Y, Chen Q, Li ZY (2015) A 3D numerical study of the collateral capacity of the Circle of Willis with anatomical variation in the posterior circulation. Biomed Eng Online 14:S11
Article PubMed PubMed Central Google Scholar
Valen-Sendstad K, Bergersen AW, Shimogonya Y, Goubergrits L, Bruening J, Pallares J, Cito S, Piskin S, Pekkan K, Geers AJ, Larrabide I, Rapaka S, Mihalef V, Fu W, Qiao A, Jain K, Roller S, Mardal K-A, Kamakoti R, Spirka T, Ashton N, Revell A, Aristokleous N, Houston JG, Tsuji M, Ishida F, Menon PG, Browne LD, Broderick S, Shojima M, Koizumi S, Barbour M, Aliseda A, Morales HG, Lefèvre T, Hodis S, Al-Smadi YM, Tran JS, Marsden AL, Vaippummadhom S, Einstein GA, Brown AG, Debus K, Niizuma K, Rashad S, Sugiyama S-I, Khan MO, Updegrove AR, Shadden SC, Cornelissen BMW, Majoie CBLM, Berg P, Saalfield S, Kono K, Steinman DA (2015) Real-world variability in the prediction of intracranial aneurysm wall shear stress: the 2015 international aneurysm CFD challenge. Cardiovasc Eng Technol 9(2018):544–564
Sutalo ID, Bui AV, Ahmed S, Liffman K, Manasseh R (2014) Modeling of flow through the Circle of Willis and cerebral vasculature to assess the effects of changes in the peripheral small cerebral vasculature on the inflows. Eng Appl Comp Fluid Mech 8:609–622
Gaidzik F, Pathiraja S, Saalfeld S, Stucht D, Speck O, Thévenin D, Janiga G (2021) Hemodynamic data assimilation in a subject-specific Circle of Willis geometry. Clin Neuroradiol 31(3):643–651
Berg P, Stucht D, Janiga G, Beuing O, Speck O, Thévenin D (2014) Cerebral blood flow in a healthy Circle of Willis and two intracranial aneurysms: Computational fluid dynamics versus four-dimensional phase-contrast magnetic resonance imaging. J Biomech Eng 136:1–9.
Mattern H, Sciarra A, Godenschweger F, Stucht D, Lüsebrink F, Rose G, Speck O (2018) Prospective motion correction enables highest resolution time-of-flight angiography at 7T. Magn Reson Med 80(1):248–258
Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. In: Wells WM, Colchester A, Delp S (eds) Medical image computing and computer-assisted intervention—MICCAI’98. Springer, Berlin, pp 130–137
Berg P, Voss S, Saalfeld S, Janiga G, Bergersen AW, Valen- Sendstad K, Bruening J, Goubergrits L, Spuler A, Cancelliere NM, Steinman DA, Pereira VM, Chiu TL, Tsang ACO, Chung BJ, Cebral JR, Cito S, Pallarès J, Copelli G, Csippa B, Paál G, Fujimura S, Takao H, Hodis S, Hille G, Karmonik C, Elias S, Kellermann K, Khan MO, Marsden AL, Morales HG, Piskin S, Finol EA, Pravdivtseva M, Rajabzadeh-Oghaz H, Paliwal N, Meng H, Seshadhri S, Howard M, Shojima M, Sugiyama S, Niizuma K, Sindeev S, Frolov S, Wagner T, Brawanski A, Qian Y, Wu Y-A, Carlson KD, Dragomir-Daescu D, Beuing O (2018) Multiple aneurysms anatomy challenge 2018 (MATCH): Phase I: segmentation. Cardiovasc Eng Technol 9(4):565–581.
Stucht D, Danishad KA, Schulze P, Godenschweger F, Zaitsev M, Speck O (2015) Highest resolution in vivo human brain MRI using prospective motion correction. PLoS ONE 10(7):e0133921
Article PubMed PubMed Central Google Scholar
Moore S, David T, Chase JG, Arnold J, Fink J (2006) 3D models of blood flow in the cerebral vasculature. J Biomech 39:1454–1463
Article CAS PubMed Google Scholar
Najafi M, Cancelliere NM, Brina O, Bouillot P, Vargas MI, Delattre BM, Pereira VM, Steinman DA (2021) How patient-specific do internal carotid artery inflow rates need to be for computational fluid dynamics of cerebral aneurysms? J NeuroIntervent Surg 13:459–464
Castro MA, Putman CM, Cebral JR (2006) Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics. Am J Neuroradiol 27:1703–1712
CAS PubMed PubMed Central Google Scholar
Wan H, Ge L, Huang L, Jiang Y, Leng X, Feng X, Xiang J, Zhang X (2019) Sidewall aneurysm geometry as a predictor of rupture risk due to associated abnormal hemodynamics. Front Neurol 10(8):841–848
Article PubMed PubMed Central Google Scholar
Zhou G, Zhu Y, Yin Y, Su M, Li M (2017) Association of wall shear stress with intracranial aneurysm rupture: systematic review and meta-analysis. Sci Rep 7:5331
Article PubMed PubMed Central Google Scholar
Shen Y, Molenberg R, Bokkers RP, Wei Y, Uyttenboogaart M, van Dijk JMC (2022) The role of hemodynamics through the Circle of Willis in the development of intracranial aneurysm: a systematic review of numerical models. J Personalized Med 12(6).
Brown RD, Broderick JP (2014) Unruptured intracranial aneurysms: epidemiology, natural history, management options, and familial screening. Lancet Neurol 13:393–404
Cebral JR, Mut F, Weir J, Putman CM (2011) Association of hemodynamic characteristics and cerebral aneurysm rupture. Am J Neuroradiol 32(2):264–270
Article CAS PubMed PubMed Central Google Scholar
Detmer FJ, Chung BJ, Mut F, Slawski M, Hamzei-Sichani F, Putman C, Jiménez C, Cebral JR (2018) Development and internal validation of an aneurysm rupture probability model based on patient characteristics and aneurysm location, morphology, and hemodynamics. Int J Comput Assist Radiol Surg 13:1767–1779
Comments (0)