A.R. Frisancho, Developmental functional adaptation to high altitude: review. Am. J. Hum. Biol. 25(2), 151–168 (2013). https://doi.org/10.1002/ajhb.22367
Y. Yuan, W. Pu, Y. He, L. Wang, Effects of high altitude hypoxia on ovarian function of C57BL/6 female mice. J. Med. Theor. Pr. 36(06), 905–8+18 (2023). https://doi.org/10.19381/j.issn.1001-7585.2023.06.002
F.J. Carod-Artal, High-altitude headache and acute mountain sickness. Neurologia 29(9), 533–540 (2014). https://doi.org/10.1016/j.nrl.2012.04.015
Article PubMed CAS Google Scholar
M. Serrano Dueñas, High altitude pulmonary edema. Study of 21 cases. Med. Clin. 110(12), 446–449 (1998)
A.J. Hamilton, A. Cymmerman, P.M. Black, High altitude cerebral edema. Neurosurgery 19(5), 841–849 (1986). https://doi.org/10.1227/00006123-198611000-00024
Article PubMed CAS Google Scholar
L.P. Thompson, L. Chen, B.M. Polster, G. Pinkas, H. Song, Prenatal hypoxia impairs cardiac mitochondrial and ventricular function in guinea pig offspring in a sex-related manner. Am. J. Physiol. Regul. Integr. Comp. Physiol. 315(6), R1232–r41 (2018). https://doi.org/10.1152/ajpregu.00224.2018
Article PubMed PubMed Central CAS Google Scholar
A.M. Wengrowski, S. Kuzmiak-Glancy, R. Jaimes 3rd, M.W. Kay, NADH changes during hypoxia, ischemia, and increased work differ between isolated heart preparations. Am. J. Physiol. Heart Circ. Physiol. 306(4), H529–H537 (2014). https://doi.org/10.1152/ajpheart.00696.2013
Article PubMed CAS Google Scholar
L. Terraneo, M. Samaja, Comparative response of brain to chronic hypoxia and hyperoxia. Int. J. Mol. Sci.18(9), (2017) https://doi.org/10.3390/ijms18091914
J.C. LaManna, J.C. Chavez, P. Pichiule, Structural and functional adaptation to hypoxia in the rat brain. J. Exp. Biol. 207(Pt 18), 3163–3169 (2004). https://doi.org/10.1242/jeb.00976
Article PubMed CAS Google Scholar
W. Habre, T.Z. Jánosi, F. Fontao, C. Meyers, G. Albu, J.C. Pache et al. Mechanisms for lung function impairment and airway hyperresponsiveness following chronic hypoxia in rats. Am. J. Physiol. Lung Cell Mol. Physiol. 298(4), L607–L614 (2010). https://doi.org/10.1152/ajplung.00222.2009
Article PubMed CAS Google Scholar
A. Mojiri, M. Nakhaii-Nejad, W.L. Phan, S. Kulak, A. Radziwon-Balicka, P. Jurasz et al. Hypoxia results in upregulation and de novo activation of von Willebrand factor expression in lung endothelial cells. Arterioscler Thromb. Vasc. Biol. 33(6), 1329–1338 (2013). https://doi.org/10.1161/atvbaha.113.301359
Article PubMed CAS Google Scholar
S. Bhandari, X. Zhang, C. Cui, Yangla, L. Liu, Ouzhuluobu, et al., Sherpas share genetic variations with Tibetans for high-altitude adaptation. Mol. Genet Genom. Med. 5(1), 76–84 (2017). https://doi.org/10.1002/mgg3.264
C.R. Bangham, J.M. Sacherer, Fertility of Nepalese Sherpas at moderate altitudes: comparison with high-altitude data. Ann. Hum. Biol. 7(4), 323–330 (1980). https://doi.org/10.1080/03014468000004391
Article PubMed CAS Google Scholar
D.M. Heer, Fertility differences in Andean countries: a reply to W. H. James. Popul Stud. 21(1), 71–73 (1967). https://doi.org/10.1080/00324728.1967.10405464
G.F. Gonzales, Peruvian contributions to the study on human reproduction at high altitude: from the chronicles of the Spanish conquest to the present. Respir. Physiol. Neurobiol. 158(2-3), 172–179 (2007). https://doi.org/10.1016/j.resp.2007.03.015
G.F. Gonzales, A. Villena, M. Ubilluz, Age at menarche in Peruvian girls at sea level and at high altitude: effect of ethnic background and socioeconomic status. Am. J. Hum. Biol. 8(4), 457–463 (1996). https://doi.org/10.1002/(sici)1520-6300(1996)8:4<457::AID-AJHB5>3.0.Co;2-v
A.E. Abelson, T.S. Baker, P.T. Baker, Altitude, migration, and fertility in the Andes. Soc. Biol. 21(1), 12–27 (1974). https://doi.org/10.1080/19485565.1974.9988086
Article PubMed CAS Google Scholar
V.F. Chapur, E.L. Alfaro, R. Bronberg, J.E. Dipierri, Relationship between infant mortality and altitude in the Northwest region of Argentina. Arch. Argent. Pediatr. 115(5), 462–469 (2017). https://doi.org/10.5546/aap.2017.eng.462
C. Monge, Life in the andes and chronic mountain sickness. Science 95(2456), 79–84 (1942). https://doi.org/10.1126/science.95.2456.79
Article PubMed CAS Google Scholar
X.L. Ma, H. Chen, W. Han, W.J. Li, Comparative older infertile women with poor ovarian reserve function in high altitude and low plain area. China Health Ind. 13(08), 87–89 (2016). https://doi.org/10.16659/j.cnki.1672-5654.2016.08.087
A. Ornoy, M. Becker, L. Weinstein-Fudim, Z. Ergaz, Diabetes during pregnancy: a maternal disease complicating the course of pregnancy with long-term deleterious effects on the offspring. A clinical review. Int. J. Mol. Sci. 22(6), (2021). https://doi.org/10.3390/ijms22062965
M.K. Niranjan, R. Srivastava, Expression of estrogen receptor alpha in developing brain, ovary and shell gland of Gallus gallus domesticus: impact of stress and estrogen. Steroids 146, 21–33 (2019). https://doi.org/10.1016/j.steroids.2019.03.002
Article PubMed CAS Google Scholar
G.D. Braunstein, Androgen insufficiency in women. Growth Horm. IGF Res 16 Suppl A, S109–S117 (2006). https://doi.org/10.1016/j.ghir.2006.03.009
Article PubMed CAS Google Scholar
T. Zhang, B. Li, W. Zhao, P.L. Lei, M.C. Gui, C.M. Qiu, The effects of chronic intermittent hypoxia on hypothalamic-pituitary-testicular axis in rats. Laser J. 30(05), 94–95 (2009)
J.P. Richalet, M. Letournel, J.C. Souberbielle, Effects of high-altitude hypoxia on the hormonal response to hypothalamic factors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299(6), R1685–R1692 (2010). https://doi.org/10.1152/ajpregu.00484.2010
Article PubMed CAS Google Scholar
W. Liu, L. Pu, B. Deng, H. Xu, Z. Wang, T. Wang et al. Intermittent hypobaric hypoxia causes deleterious effects on the reproductive system in female rats. Biomed. Pharmacother. 130, 110511 (2020). https://doi.org/10.1016/j.biopha.2020.110511
Article PubMed CAS Google Scholar
S. Wang, S.S. Yuen, D.J. Randall, C.Y. Hung, T.K. Tsui, W.L. Poon et al. Hypoxia inhibits fish spawning via LH-dependent final oocyte maturation. Comp. Biochem Physiol. C. Toxicol. Pharm. 148(4), 363–369 (2008). https://doi.org/10.1016/j.cbpc.2008.03.014
S.Z. Li, Z.X. Cai, H.B. Wang, B.H. Zheng, C.J. Jiang, Effect of hypoxia(3,658m) on sermu levels of progesterone and estradiol in women. J. Radioimmunol. 01, 30–31 (2006)
M. Depmann, M.J. Faddy, Y.T. van der Schouw, P.H. Peeters, S.L. Broer, T.W. Kelsey et al. The relationship between variation in size of the primordial follicle pool and age at natural menopause. J. Clin. Endocrinol. Metab. 100(6), E845–E851 (2015). https://doi.org/10.1210/jc.2015-1298
J. Na, X.H. Tang, lU MS, research progress of the correlation of follicular fluid composition and oocyte quality. Med. Recapitulate 21(21), 3886–3889 (2015)
X. Fu, L. Shi, P. Liu, Y. Jiao, S. Guo, Q. Chen, et al., Expression and clinical significance of HIF-1α in follicular fluid and granulosa cells in infertile PCOS patients. Reprod. Sci. (2023) https://doi.org/10.1007/s43032-022-01135-2
D. Fabian, S. Juhás, G. Il’ková, J. Koppel, Dose- and time-dependent effects of TNFalpha and actinomycin D on cell death incidence and embryo growth in mouse blastocysts. Zygote 15(3), 241–249 (2007). https://doi.org/10.1017/s0967199407004200
Article PubMed CAS Google Scholar
J. Wen, W. Sun, B. Ning, X.M. Zhen, L. Wang, J. Chen, The study of relationship between follicular vascular endothelial growth factor and the outcome of pregnancy in in vitro fertilization cycles. J. Reprod. Med. 06, 348–351 (2003)
S. Shaw, H. Gidugu, G. Bhaumik, M.P.K. Reddy, U. Panjwani, D. Ghosh, Anti-Mullerian hormone and macrophage migration inhibitory factor determine the reproductive health of Ladakhi women residing at 3,500 m. High. Alt. Med. Biol. 22(3), 317–326 (2021). https://doi.org/10.1089/ham.2021.0024
Article PubMed CAS Google Scholar
A.A. Tirpe, D. Gulei, S.M. Ciortea, C. Crivii, I. Berindan-Neagoe, Hypoxia: overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes. Int. J. Mol. Sci. 20(24), (2019) https://doi.org/10.3390/ijms20246140
D. Šumanović-Glamuzina, F. Čulo, M.I. Čulo, P. Konjevoda, M. Jerković-Raguž, A comparison of blood and cerebrospinal fluid cytokines (IL-1β, IL-6, IL-18, TNF-α) in neonates with perinatal hypoxia. Bosn. J. Basic Med Sci. 17(3), 203–210 (2017). https://doi.org/10.17305/bjbms.2017.1381
Article PubMed PubMed Central CAS Google Scholar
J. Hernández-Morales, C.G. Hernández-Coronado, A. Guzmán, D. Zamora-Gutiérrez, F. Fierro, C.G. Gutiérrez et al. Hypoxia up-regulates VEGF ligand and downregulates VEGF soluble receptor mRNA expression in bovine granulosa cells in vitro. Theriogenology 165, 76–83 (2021). https://doi.org/10.1016/j.theriogenology.2021.02.006
Article PubMed CAS Google Scholar
A.L. Durlinger, M.J. Gruijters, P. Kramer, B. Karels, H.A. Ingraham, M.W. Nachtigal et al. Anti-Müllerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology 143(3), 1076–1084 (2002). https://doi.org/10.1210/endo.143.3.8691
Article PubMed CAS Google Scholar
J. Bedenk, E. Vrtačnik-Bokal, I. Virant-Klun, The role of anti-Müllerian hormone (AMH) in ovarian disease and infertility. J. Assist Reprod. Genet 37(1), 89–100 (2020). https://doi.org/10.1007/s10815-019-01622-7
Comments (0)