Stimulating thyroglobulin to TSH ratio predict long-term efficacy of 131I therapy in patients with differentiated thyroid cancer after total thyroidectomy: a retrospective study

F. Bray, J. Ferlay, I. Soerjomataram et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018)

Article  PubMed  Google Scholar 

S.I. Sherman, Thyroid carcinoma. Lancet 361(9356), 501–511 (2003)

Article  PubMed  Google Scholar 

B.R. Haugen, E.K. Alexander, K.C. Bible et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 26(1), 1–133 (2016)

Article  PubMed  PubMed Central  Google Scholar 

R. Paschke, T. Lincke, S.P. Müller et al. The treatment of well-differentiated thyroid carcinoma. Dtsch. Arztebl. Int. 112(26), 452–458 (2015)

E.L. Mazzaferri, R.T. Kloos, Clinical review 128: current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol. Metab. 86(4), 1447–1463 (2001)

Article  CAS  PubMed  Google Scholar 

C.J. Edmonds, S. Hayes, J.C. Kermode et al. Measurement of serum TSH and thyroid hormones in the management of treatment of thyroid carcinoma with radioiodine. Br. J. Radio. 50(599), 799–807 (1977)

Article  CAS  Google Scholar 

D.P. Carvalho, C. Dupuy, Thyroid hormone biosynthesis and release. Mol. Cell Endocrinol. 458, 6–15 (2017)

Article  CAS  PubMed  Google Scholar 

D.B. Kendler, F. Vaisman, R. Corbo et al. Preablation stimulated thyroglobulin is a good predictor of successful ablation in patients with differentiated thyroid cancer. Clin. Nucl. Med 37(6), 545–549 (2012)

Article  PubMed  Google Scholar 

W. Zheng, Z. Rui, X. Wang et al. The influences of TSH stimulation level, stimulated Tg level and Tg/TSH ratio on the therapeutic effect of 131I treatment in DTC patients. Front Endocrinol. (Lausanne) 12, 601960 (2021)

Article  PubMed  Google Scholar 

M.B. Amin, F.L. Greene, S.B. Edge et al. The eighth edition AJCC cancer staging manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 67(2), 93–99 (2017)

Article  PubMed  Google Scholar 

T. Kogai, T. Endo, T. Saito et al. Regulation by thyroid-stimulating hormone of sodium/iodide symporter gene expression and protein levels in FRTL-5 cells. Endocrinology 138(6), 2227–2232 (1997)

Article  CAS  PubMed  Google Scholar 

S. Wagner, G. Aust, M. Schott et al. Regulation of sodium-iodide-symporter gene expression in human thyrocytes measured by real-time polymerase chain reaction. Exp. Clin. Endocrinol. Diabetes 110(8), 398–402 (2002)

Article  CAS  PubMed  Google Scholar 

X. Li, T. Zhao, W. Gao et al. Study on the relationship between TSH changes before 131I treatment and efficacy in patients with low and intermediate-risk differentiated thyroid cancer. Chin J Nuclear Med Mol Imaging, 36 (2016)

T. Zhao, J. Liang, Z. Guo, T. Li, Y. Lin, In patients with low- to intermediate-risk thyroid cancer, a preablative thyrotropin level of 30 μiu/ml is not adequate to achieve better response to 131I therapy. Clin. Nucl. Med 41(6), 454–458 (2016)

Article  PubMed  Google Scholar 

A. Vrachimis, B. Riemann, U. Mäder et al. Endogenous TSH levels at the time of 131I ablation do not influence ablation success, recurrence-free survival or differentiated thyroid cancer-related mortality. Eur. J. Nucl. Med Mol. Imaging 43(2), 224–231 (2016)

Article  CAS  PubMed  Google Scholar 

M.C. Lee, M.J. Kim, H.S. Choi et al. Postoperative thyroid-stimulating hormone levels did not affect recurrence after thyroid lobectomy in patients with papillary thyroid cancer. Endocrinol. Metab. (Seoul.) 34(2), 150–157 (2019)

Article  CAS  PubMed  Google Scholar 

R. Over, S. Mannan, H. Nsouli-Maktabi et al. Age and the thyrotropin response to hypothyroxinemia. J. Clin. Endocrinol. Metab. 95(8), 3675–3683 (2010)

Article  CAS  PubMed  PubMed Central  Google Scholar 

D. Yan, B. Zhang et al. Central zone lymphatic metastasis in patients with papillary thyroid carcinoma cN0[J]. Chin. J. Otorhinolaryngol.-Head. Neck Surg. 45(11), 891–894 (2010)

Google Scholar 

R.M. Uribe, M. Zacarias, G. Corkidi et al. 17β-Oestradiol indirectly inhibits thyrotrophin-releasing hormone expression in the hypothalamic paraventricular nucleus of female rats and blunts thyroid axis response to cold exposure. J. Neuroendocrinol. 21(5), 439–448 (2009)

Article  CAS  PubMed  Google Scholar 

M. Toubeau, C. Touzery, P. Arveux et al. Predictive value for disease progression of serum thyroglobulin levels measured in the postoperative period and after (131) I ablation therapy in patients with differentiated thyroid cancer. J. Nucl. Med 45(6), 988–994 (2004)

CAS  PubMed  Google Scholar 

S. Zubair Hussain, M.U. Zaman, S. Malik et al. Preablation stimulated thyroglobulin/TSH ratio as a predictor of successful I (131) remnant ablation in patients with differentiated thyroid cancer following total thyroidectomy. J. Thyroid Res. 2014, 610273 (2014)

Article  PubMed  PubMed Central  Google Scholar 

E.Y. Kim, T.Y. Kim, W.G. Kim et al. Effects of different doses of radioactive iodine for remnant ablation on successful ablation and on long-term recurrences in patients with differentiated thyroid carcinoma. Nucl. Med Commun. 32(10), 954–959 (2011)

Article  CAS  PubMed  Google Scholar 

B.S. Indrasena, Use of thyroglobulin as a tumour marker. World J. Biol. Chem. 8(1), 81–85 (2017)

Article  PubMed  PubMed Central  Google Scholar 

A.F.J. De Marchi, A.B.T. de Macedo, C.S.P. Soares et al. Thyroglobulin/thyrotropin ratio for predicting long-term response in differentiated thyroid carcinoma: a retrospective study. Arch. Endocrinol. Metab. 65(4), 428–435 (2021)

PubMed  Google Scholar 

P.G. Trevizam, J.V. Tagliarini, E.C. Castilho et al. Thyroglobulin levels and thyroglobulin/thyrotropin ratio could predict the success of the ablative/therapeutic (131) I in the differentiated thyroid cancers. Endocr. Res 42(1), 42–48 (2017)

Article  CAS  PubMed  Google Scholar 

D.S. McLeod, D.S. Cooper, P.W. Ladenson et al. Prognosis of differentiated thyroid cancer in relation to serum thyrotropin and thyroglobulin antibody status at time of diagnosis. Thyroid 24(1), 35–42 (2014)

Article  CAS  PubMed  PubMed Central  Google Scholar 

J. Makarewicz, Z. Adamczewski, M. Knapska-Kucharska et al. Evaluation of the diagnostic value of the first thyroglobulin determination in detecting metastases after differentiated thyroid carcinoma surgery. Exp. Clin. Endocrinol. Diabetes 114(9), 485–489 (2006)

Article  CAS  PubMed  Google Scholar 

M. Pan, Z. Li, M. Jia et al. Combination of stimulated thyroglobulin and antithyroglobulin antibody predicts the efficacy and prognosis of 131I therapy in patients with differentiated thyroid cancer following total thyroidectomy: a retrospective study. Front Endocrinol. (Lausanne) 13, 857057 (2022)

Article  PubMed  Google Scholar 

M. Klain, L. Pace, E. Zampella et al. Outcome of patients with differentiated thyroid cancer treated with 131-iodine on the basis of a detectable serum thyroglobulin level after initial treatment. Front Endocrinol. (Lausanne) 10, 146 (2019)

Article  PubMed  Google Scholar 

R.M. Tuttle, A.S. Alzahrani, Risk stratification in differentiated thyroid cancer: from detection to final follow-up. J. Clin. Endocrinol. Metab. 104, 4087–4100 (2019)

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif