Srivastava M, Deal C (2002) Osteoporosis in elderly: prevention and treatment. Clin Geriatr Med 18(3):529–555. https://doi.org/10.1016/s0749-0690(02)00022-8
Zhang Q, Zhou J, Wang Q, Lu C, Xu Y, Cao H, Xie X, Wu X, Li J, Chen D (2020) Association between bone mineral density and lipid profile in Chinese women. Clin Interv Aging 15(15):1649–1664. https://doi.org/10.2147/CIA.S266722
Article PubMed PubMed Central Google Scholar
Tan A, Shu J, Huang H, Shao H, Yang J (2023) The correlation between the serum LDL-C/Apo B ratio and lumbar bone mineral density in young adults. BMC Musculoskelet Disord 24(1):213. https://doi.org/10.1186/s12891-023-06325-w
Article PubMed PubMed Central Google Scholar
Ambrogini E, Que X, Wang S, Yamaguchi F, Weinstein RS, Tsimikas S, Manolagas SC, Witztum JL, Jilka RL (2018) Oxidation-specific epitopes restrain bone formation. Nat Commun 9(1):2193. https://doi.org/10.1038/s41467-018-04047-5
Article PubMed PubMed Central Google Scholar
Zhao H, Li Y, Zhang M, Qi L, Tang Y (2021) Blood lipid levels in patients with osteopenia and osteoporosis:a systematic review and meta-analysis. J Bone Miner Metab 39(3):510–520. https://doi.org/10.1007/s00774-020-01189-9
Chen YY, Wang WW, Yang L, Chen WW, Zhang HX (2018) Association between lipid profiles and osteoporosis in postmenopausal women: a meta-analysis. Eur Rev Med Pharmacol Sci 22(1):1–9. https://doi.org/10.26355/eurrev_201801_14093
Sekula P, Del Greco MF, Pattaro C, Köttgen A (2016) Mendelian Randomization as an approach to assess causality using observational data. J Am Soc Nephrol 27(11):3253–3265. https://doi.org/10.1681/ASN.2016010098
Article PubMed PubMed Central Google Scholar
Zheng HTOF, Forgetta V, Hsu YH, et.al. Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature. 2015 526(7571):112–7. doi: https://doi.org/10.1038/nature14878. Epub 2015 Sep 14. PMID: 26367794; PMCID: PMC4755714.) and a meta-analysis (Medina-Gomez C, Kemp JP, Trajanoska K, et.al. Life-Course Genome-wide Association Study Meta-analysis of Total Body BMD and Assessment of Age-Specific Effects. Am J Hum Genet. 2018 Jan 4;102(1):88–102. doi:https://doi.org/10.1016/j.ajhg.2017.12.005. PMID: 29304378; PMCID: PMC5777980
Richardson TG, Sanderson E, Palmer TM, Ala-Korpela M, Ference BA, Davey Smith G, Holmes MV (2020) Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: a multivariable Mendelian randomisation analysis. PloS Med 17(3):e1003062. https://doi.org/10.1371/journal.pmed.1003062
Article PubMed PubMed Central Google Scholar
Bjornsson HT, Fallin MD, Feinberg AP (2004) An integrated epigenetic and genetic approach to common human disease. Trends Genet 20(8):350–358. https://doi.org/10.1016/j.tig.2004.06.009
Jones AC, Irvin MR, Claas SA, Arnett DK (2021) Lipid phenotypes and DNA methylation: a review of the literature. Curr Atheroscler Rep 23(11):71. https://doi.org/10.1007/s11883-021-00965-w
Article PubMed PubMed Central Google Scholar
Dekkers KF, van Iterson M, Slieker RC et al (2016) Blood lipids influence DNA methylation in circulating cells. Genome Biol 17(1):138. https://doi.org/10.1186/s13059-016-1000-6
Article PubMed PubMed Central Google Scholar
Zheng HF, Forgetta V, Hsu YH et al (2015) Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature 526(7571):112–7. https://doi.org/10.1038/nature14878
Article PubMed PubMed Central Google Scholar
Medina-Gomez C, Kemp JP, Trajanoska K et al (2018) Life-course genome-wide association study meta-analysis of total body BMD and assessment of age-specific effects. Am J Hum Genet 102(1):88–102. https://doi.org/10.1016/j.ajhg.2017.12.005
Article PubMed PubMed Central Google Scholar
Richardson TG, Sanderson E, Palmer TM et al (2020) Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: a multivariable Mendelian randomisation analysis. PloS Med 17(3):e1003062. https://doi.org/10.1371/journal.pmed.1003062
Article PubMed PubMed Central Google Scholar
Willer CJ, Schmidt EM, Sengupta S et al (2013) Global lipids genetics consortium. Discovery and refinement of loci associated with lipid levels. Nat Genet 45(11):1274–1283. https://doi.org/10.1038/ng.2797
Article PubMed PubMed Central Google Scholar
Ong JS, MacGregor S (2019) Implementing MR-PRESSO and GCTA-GSMR for pleiotropy assessment in Mendelian randomization studies from a practitioner’s perspective. Genet Epidemiol 43(6):609–616. https://doi.org/10.1002/gepi.22207
Article PubMed PubMed Central Google Scholar
Burgess S, Davies NM, Thompson SG (2016) Bias due to participant overlap in two-sample Mendelian randomization. Genet Epidemiol 40(7):597–608
Article PubMed PubMed Central Google Scholar
McRae AF, Marioni RE, Shah S et al (2018) Identification of 55,000 Replicated DNA Methylation QTL. Sci Rep 8:17605. https://doi.org/10.1038/s41598-018-35871-w
Article PubMed PubMed Central Google Scholar
Wu Y, Zeng J, Zhang F et al (2018) Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. Nat Commun 9:918. https://doi.org/10.1038/s41467-018-03371-0
Article PubMed PubMed Central Google Scholar
Sayols-Baixeras S, Subirana I, Lluis-Ganella C et al (2016) Identification and validation of seven new loci showing differential DNA methylation related to serum lipid profile: an epigenome-wide approach the REGICOR study. Hum Mol Genet 25(20):4556–4565. https://doi.org/10.1093/hmg/ddw285.Erratum.In:HumMolGenet.2019Apr15;28(8):1402.PMID:28173150;PMCID:PMC6284258
Article PubMed PubMed Central Google Scholar
Zhu Z, Zhang F, Hu H et al (2016) Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet 48:481–487. https://doi.org/10.1038/ng.3538
Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, Laurin C, Burgess S, Bowden J, Langdon R, Tan VY, Yarmolinsky J, Shihab HA, Timpson NJ, Evans DM, Relton C, Martin RM, Davey Smith G, Gaunt TR, Haycock PC (2018) The MR-Base platform supports systematic causal inference across the human phenome. Elife 30(7):e34408. https://doi.org/10.7554/eLife.34408
Yuan S, Larsson S (2020) Causal associations of iron status with gout and rheumatoid arthritis, but not with inflammatory bowel disease. Clin Nutr 39(10):3119–3124. https://doi.org/10.1016/j.clnu.2020.01.019
Hemani G, Zheng J, Be Elsworth et al (2018) The MR-Base platform supports systematic causal inference across the human phenome. Elife. 7:e34408. https://doi.org/10.7554/eLife.34408
Article PubMed PubMed Central Google Scholar
Huang W, Xiao J, Ji J, Chen L (2021) Association of lipid-lowering drugs with COVID-19 outcomes from a Mendelian randomization study. Elife 6(10):e73873. https://doi.org/10.7554/eLife.73873
Ghorabi S, Shab-Bidar S, Sadeghi O, Nasiri M, Khatibi SR, Djafarian K (2019) Lipid profile and risk of bone fracture: a systematic review and meta-analysis of observational studies. Endocr Res 44(4):168–184. https://doi.org/10.1080/07435800.2019.1625057
Ghadiri-Anari A, Mortezaii-Shoroki Z, Modarresi M, Dehghan A (2016) Association of lipid profile with bone mineral density in postmenopausal women in Yazd province. Int J Reprod Biomed 14(9):597–602
Article PubMed PubMed Central Google Scholar
Go JH, Song YM, Park JH, Park JY, Choi YH (2012) Association between serum cholesterol level and bone mineral density at lumbar spine and femur neck in postmenopausal korean women. Korean J Fam Med 33(3):166–73. https://doi.org/10.4082/kjfm.2012.33.3.166
Article PubMed PubMed Central Google Scholar
Qi T, Wu Y, Zeng J et al (2018) Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood. Nat Commun 9:2282. https://doi.org/10.1038/s41467-018-04558-1
Article PubMed PubMed Central Google Scholar
Hemani G, Bowden J, Davey SG (2018) Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum Mol Genet 27(R2):R195–R208. https://doi.org/10.1093/hmg/ddy163
Article PubMed PubMed Central Google Scholar
Zheng J, Baird D, Borges MC, Bowden J, Hemani G, Haycock P, Evans DM, Smith GD (2017) Recent developments in mendelian randomization studies. Curr Epidemiol Rep 4(4):330–345. https://doi.org/10.1007/s40471-017-0128-6
Article PubMed PubMed Central Google Scholar
Miserez AR, Cao G, Probst LC, Hobbs HH (1997) Structure of the human gene encoding sterol regulatory element binding protein 2 (SREBF2). Genomics 40(1):31–40. https://doi.org/10.1006/geno.1996.4525
García-García AB, Martínez-Hervás S, Vernia S, Ivorra C, Pulido I, Martín-Escudero JC, Casado M, Carretero J, Real JT, Chaves FJ (2022) A very rare variant in SREBF2, a possible cause of hypercholesterolemia and increased glycemic levels. Biomedicines 10(5):1178. https://doi.org/10.3390/biomedicines10051178
Article PubMed PubMed Central Google Scholar
Golic M, Stojanovska V, Bendix I, Wehner A, Herse F, Haase N, Kräker K, Fischer C, Alenina N, Bader M, Schütte T, Schuchardt M, van der Giet M,
Comments (0)