S.H. Ralston, B. de Crombrugghe, Genetic regulation of bone mass and susceptibility to osteoporosis. Genes Dev. 20, 2492–2506 (2006). https://doi.org/10.1101/gad.1449506
Article CAS PubMed Google Scholar
E.L. Duncan, M.A. Brown, Genetic studies in osteoporosis–the end of the beginning. Arthritis Res. Ther. 10, 214 (2008). https://doi.org/10.1186/ar2479
Article CAS PubMed PubMed Central Google Scholar
T. Videman, E. Levälahti, M.C. Battié et al. Heritability of BMD of femoral neck and lumbar spine: a multivariate twin study of Finnish men. J. Bone Min. Res. 22, 1455–1462 (2007). https://doi.org/10.1359/jbmr.070606
J.M. Zmuda, L.M. Yerges-Armstrong, S.P. Moffett et al. Genetic analysis of vertebral trabecular bone density and cross-sectional area in older men. Osteoporos. Int. 22, 1079–1090 (2011). https://doi.org/10.1007/s00198-010-1296-0
Article CAS PubMed Google Scholar
F.M.K. Williams, T.D. Spector, Recent advances in the genetics of osteoporosis. J. Musculoskelet. Neuronal Interact. 6, 27–35 (2006)
F.M.K. Williams, T.D. Spector, The genetics of osteoporosis. Acta Reumatol. Port. 32, 231–240 (2007)
Boskey A.L., Robey P.G., The Composition of Bone. In: Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. John Wiley & Sons, Ltd. pp 84–92 (2018).
Kiel D.P., Duncan E.L., Rivadeneira F., Human Genome-Wide Association Studies. In: Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. John Wiley & Sons, Ltd. pp 378–384 (2018).
H. Zhu, J. Jiang, Q. Wang et al. Associations between ERα/β gene polymorphisms and osteoporosis susceptibility and bone mineral density in postmenopausal women: a systematic review and meta-analysis. BMC Endocr. Disord. 18, 11 (2018). https://doi.org/10.1186/s12902-018-0230-x
Article CAS PubMed PubMed Central Google Scholar
D. Wang, R. Liu, H. Zhu et al. Vitamin D receptor Fok I polymorphism is associated with low bone mineral density in postmenopausal women: a meta-analysis focused on populations in Asian countries. Eur. J. Obstet. Gynecol. Reprod. Biol. 169, 380–386 (2013). https://doi.org/10.1016/j.ejogrb.2013.03.031
A. Bogacz, A. Gorska, A. Kaminski et al. The importance of NFκB1 rs4648068 and RUNX2 rs7771980 polymorphisms in bone metabolism of postmenopausal Polish women. Ginekol. Pol. 92, 617 (2021). https://doi.org/10.5603/GP.a2021.0044
T. Komori, Regulation of osteoblast differentiation by Runx2. Adv. Exp. Med Biol. 658, 43–49 (2010). https://doi.org/10.1007/978-1-4419-1050-9_5
Article CAS PubMed Google Scholar
M.D. Adhami, H. Rashid, H. Chen et al. Loss of Runx2 in Committed Osteoblasts Impairs Postnatal Skeletogenesis. J. Bone Min. Res 30, 71–82 (2015). https://doi.org/10.1002/jbmr.2321
S. THAWEESAPPHITHAK, J. SAENGSIN, W. KAMOLVISIT et al. Cleidocranial dysplasia and novel RUNX2 variants: dental, craniofacial, and osseous manifestations. J. Appl Oral. Sci. 30, e20220028 (2022). https://doi.org/10.1590/1678-7757-2022-0028
Article CAS PubMed PubMed Central Google Scholar
J.D. Doecke, C.J. Day, A.S.J. Stephens et al. Association of functionally different RUNX2 P2 promoter alleles with BMD. J. Bone Min. Res 21, 265–273 (2006). https://doi.org/10.1359/JBMR.051013
Y.-T. Tsao, Y.-J. Huang, H.-H. Wu et al. Osteocalcin Mediates Biomineralization during Osteogenic Maturation in Human Mesenchymal Stromal Cells. Int J. Mol. Sci. 18, 159 (2017). https://doi.org/10.3390/ijms18010159
Article CAS PubMed PubMed Central Google Scholar
F. McGuigan, J. Kumar, K.K. Ivaska et al. Osteocalcin gene polymorphisms influence concentration of serum osteocalcin and enhance fracture identification. J. Bone Min. Res 25, 1392–1399 (2010). https://doi.org/10.1002/jbmr.32
P. Sarrión, L. Mellibovsky, R. Urreizti et al. Genetic analysis of high bone mass cases from the BARCOS cohort of Spanish postmenopausal women. PloS One 9, e94607 (2014). https://doi.org/10.1371/journal.pone.0094607
Article CAS PubMed PubMed Central Google Scholar
Y.-F. Pei, L. Liu, T.-L. Liu et al. Joint Association Analysis Identified 18 New Loci for Bone Mineral Density. J. Bone Min. Res 34, 1086–1094 (2019). https://doi.org/10.1002/jbmr.3681
H.-L. Zhou, M.-H. Wei, D.-S. Di et al. Association between SEMA3A signaling pathway genes and BMD/OP risk: An epidemiological and experimental study. Front Endocrinol. 13, 1014431 (2022). https://doi.org/10.3389/fendo.2022.1014431
E.I. Auerkari, D.A. Suryandari, S.S. Umami et al. Gene promoter polymorphism of RUNX2 and risk of osteoporosis in postmenopausal Indonesian women. SAGE Open Med 2, 2050312114531571 (2014). https://doi.org/10.1177/2050312114531571
Article PubMed PubMed Central Google Scholar
T. Vaughan, D.M. Reid, N.A. Morrison, S.H. Ralston, RUNX2 alleles associated with BMD in Scottish women; interaction of RUNX2 alleles with menopausal status and body mass index. Bone 34, 1029–1036 (2004). https://doi.org/10.1016/j.bone.2004.02.004
Article CAS PubMed Google Scholar
S. Ermakov, I. Malkin, M. Keter et al. Family-based association study of polymorphisms in the RUNX2 locus with hand bone length and hand BMD. Ann. Hum. Genet 72, 510–518 (2008). https://doi.org/10.1111/j.1469-1809.2008.00441.x
Article CAS PubMed Google Scholar
L. Agueda, R. Velázquez-Cruz, R. Urreizti et al. Functional relevance of the BMD-associated polymorphism rs312009: novel involvement of RUNX2 in LRP5 transcriptional regulation. J. Bone Min. Res 26, 1133–1144 (2011). https://doi.org/10.1002/jbmr.293
B. Pineda, C. Hermenegildo, P. Laporta et al. Common polymorphisms rather than rare genetic variants of the Runx2 gene are associated with femoral neck BMD in Spanish women. J. Bone Min. Metab. 28, 696–705 (2010). https://doi.org/10.1007/s00774-010-0183-2
H.-J. Lee, J.-M. Koh, J.-Y. Hwang et al. Association of a RUNX2 promoter polymorphism with bone mineral density in postmenopausal Korean women. Calcif. Tissue Int 84, 439–445 (2009). https://doi.org/10.1007/s00223-009-9246-6
Article CAS PubMed Google Scholar
M. Bustamante, X. Nogués, L. Agueda et al. Promoter 2 -1025 T/C polymorphism in the RUNX2 gene is associated with femoral neck bmd in Spanish postmenopausal women. Calcif. Tissue Int 81, 327–332 (2007). https://doi.org/10.1007/s00223-007-9069-2
Article CAS PubMed Google Scholar
K.-C. Kim, H. Chun, C. Lai et al. The association between genetic variants of RUNX2, ADIPOQ and vertebral fracture in Korean postmenopausal women. J. Bone Min. Metab. 33, 173–179 (2015). https://doi.org/10.1007/s00774-014-0570-1
H.Y. Chen, H.D. Tsai, W.C. Chen et al. Relation of polymorphism in the promotor region for the human osteocalcin gene to bone mineral density and occurrence of osteoporosis in postmenopausal Chinese women in Taiwan. J. Clin. Lab Anal. 15, 251–255 (2001). https://doi.org/10.1002/jcla.1036
Article CAS PubMed PubMed Central Google Scholar
Y. Yamada, F. Ando, N. Niino, H. Shimokata, Association of polymorphisms of interleukin-6, osteocalcin, and vitamin D receptor genes, alone or in combination, with bone mineral density in community-dwelling Japanese women and men. J. Clin. Endocrinol. Metab. 88, 3372–3378 (2003). https://doi.org/10.1210/jc.2002-021449
Article CAS PubMed Google Scholar
X.-Y. Mo, C.-K. Cao, F.-H. Xu et al. Lack of association between the HindIII RFLP of the osteocalcin (BGP) gene and bone mineral density (BMD) in healthy pre- and postmenopausal Chinese women. J. Bone Min. Metab. 22, 264–269 (2004). https://doi.org/10.1007/s00774-003-0478-7
J.G. Kim, S.-Y. Ku, D.O. Lee et al. Relationship of osteocalcin and matrix Gla protein gene polymorphisms to serum osteocalcin levels and bone mineral density in postmenopausal Korean women. Menopause 13, 467–473 (2006). https://doi.org/10.1097/01.gme.0000182803.06762.fb
I. Ahmad, T. Jafar, F. Mahdi et al. Osteocalcin HindIII gene polymorphism not associated with bone mineral density—A study in North Indian postmenopausal osteoporotic women. Indian J. Exp. Biol. 54, 788–793 (2016)
Y. Ling, X. Gao, H. Lin et al. A common polymorphism rs1800247 in osteocalcin gene was associated with serum osteocalcin levels, bone mineral density, and fracture: the Shanghai Changfeng Study. Osteoporos. Int 27, 769–779 (2016). https://doi.org/10.1007/s00198-015-3244-5
Article CAS PubMed Google Scholar
X.-Y. Zhang, J.-W. He, W.-Z. Fu et al. Associations of Serum Osteocalcin and Polymorphisms of the Osteocalcin Gene with Bone Mineral Density in Postmenopausal and Elderly Chinese Women. J. Nutr. Nutr. 9, 231–242 (2016). https://doi.org/10.1159/000452130
A. Gustavsson, P. Nordström, R. Lorentzon et al. Osteocalcin gene polymorphism is related to bone density in healthy adolescent females. Osteoporos. Int 11, 847–851 (2000). https://doi.org/10.1007/s001980070043
Article CAS PubMed Google Scholar
Y. Dohi, M. Iki, H. Ohgushi et al. A novel polymorphism in the promoter region for the human osteocalcin gene: the possibility of a correlation with bone mineral density in postmenopausal Japanese women. J. Bone Min. Res 13, 1633–1639 (1998). https://doi.org/10.1359/jbmr.1998.13.10.1633
Comments (0)