Reproducible strategy for excisional skin-wound-healing studies in mice

Koren, E. et al. Thy1 marks a distinct population of slow-cycling stem cells in the mouse epidermis. Nat. Commun. 13, 4628 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aragona, M. et al. Defining stem cell dynamics and migration during wound healing in mouse skin epidermis. Nat. Commun. 8, 14684 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Lisse, T. S., Sharma, M., Vishlaghi, N., Pullagura, S. R. & Braun, R. E. GDNF promotes hair formation and cutaneous wound healing by targeting bulge stem cells. NPJ Regen. Med. 5, 13 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dekoninck, S. & Blanpain, C. Stem cell dynamics, migration and plasticity during wound healing. Nat. Cell Biol. 21, 18–24 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chou, W. C. et al. Direct migration of follicular melanocyte stem cells to the epidermis after wounding or UVB irradiation is dependent on Mc1r signaling. Nat. Med. 19, 924–929 (2013).

Article  CAS  PubMed  Google Scholar 

Page, M. E., Lombard, P., Ng, F., Göttgens, B. & Jensen, K. B. The epidermis comprises autonomous compartments maintained by distinct stem cell populations. Cell Stem Cell 13, 471–482 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Donati, G. et al. Wounding induces dedifferentiation of epidermal Gata6+ cells and acquisition of stem cell properties. Nat. Cell Biol. 19, 603–613 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu, C. P. et al. Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair. Cell 150, 136–150 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shook, B. A. et al. Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair. Science 362, eaar2971 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Plikus, M. V. et al. Regeneration of fat cells from myofibroblasts during wound healing. Science 355, 748–752 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shook, B. A. et al. Dermal adipocyte lipolysis and myofibroblast conversion are required for efficient skin repair. Cell Stem Cell 26, 880–895.e6 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McGee, H. M. et al. IL-22 promotes fibroblast-mediated wound repair in the skin. J. Invest. Dermatol. 133, 1321–1329 (2013).

Article  CAS  PubMed  Google Scholar 

Shook, B., Xiao, E., Kumamoto, Y., Iwasaki, A. & Horsley, V. CD301b+ macrophages are essential for effective skin wound healing. J. Invest. Dermatol. 136, 1885–1891 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Toulon, A. et al. A role for human skin-resident T cells in wound healing. J. Exp. Med. 206, 743–750 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keyes, B. E. et al. Impaired epidermal to dendritic T cell signaling slows wound repair in aged skin. Cell 167, 1323–1338.e14 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lim, C. H. et al. Hedgehog stimulates hair follicle neogenesis by creating inductive dermis during murine skin wound healing. Nat. Commun. 9, 4903 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Wietecha, M. S. et al. Activin-mediated alterations of the fibroblast transcriptome and matrisome control the biomechanical properties of skin wounds. Nat. Commun. 11, 2604 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rognoni, E. et al. Inhibition of β-catenin signalling in dermal fibroblasts enhances hair follicle regeneration during wound healing. Development 143, 2522–2535 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Hiebert, P. et al. Nrf2-mediated fibroblast reprogramming drives cellular senescence by targeting the matrisome. Dev. Cell 46, 145–161.e10 (2018).

Article  CAS  PubMed  Google Scholar 

Naik, S. et al. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 550, 475–480 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gonzales, K. A. U. et al. Stem cells expand potency and alter tissue fitness by accumulating diverse epigenetic memories. Science 374, eabh2444 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, X. et al. IL-17R–EGFR axis links wound healing to tumorigenesis in Lrig1+ stem cells. J. Exp. Med. 216, 195–214 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weber, C. et al. Macrophage infiltration and alternative activation during wound healing promote MEK1-induced skin carcinogenesis. Cancer Res. 76, 805–817 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ge, Y. et al. Stem cell lineage infidelity drives wound repair and cancer. Cell 169, 636–650.e14 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lintel, H. et al. Transdermal deferoxamine administration improves excisional wound healing in chronically irradiated murine skin. J. Transl. Med. 4, 1–13 (2022).

Google Scholar 

Ben-Yehuda Greenwald, M. et al. Topical wound treatment with a nitric oxide-releasing PDE5 inhibitor formulation enhances blood perfusion and promotes healing in mice. Pharmaceutics 14, 2358 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ankawa, R. et al. Apoptotic cells represent a dynamic stem cell niche governing proliferation and tissue regeneration. Dev. Cell 56, 1900–1916.e5 (2021).

Article  CAS  PubMed  Google Scholar 

Fuchs, Y. et al. Sept4/ARTS regulates stem cell apoptosis and skin regeneration. Science 341, 286–289 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sedov, E. et al. THY1-mediated mechanisms converge to drive YAP activation in skin homeostasis and repair. Nat. Cell Biol. 24, 1049–1063 (2022).

Article  CAS  PubMed  Google Scholar 

Rossiter, H. et al. Loss of vascular endothelial growth factor A activity in murine epidermal keratinocytes delays wound healing and inhibits tumor formation. Cancer Res. 64, 3508–3516 (2004).

Article  CAS  PubMed  Google Scholar 

Nguyen, H. et al. Tcf3 and Tcf4 are essential for long-term homeostasis of skin epithelia. Nat. Genet. 41, 1068–1075 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jirkof, P., Cesarovic, N., Rettich, A., Fleischmann, T. & Arras, M. Individual housing of female mice: influence on postsurgical behaviour and recovery. Lab. Anim. 46, 325–334 (2012).

Article  CAS  PubMed  Google Scholar 

Pastar, I. et al. Epithelialization in wound healing: a comprehensive review. Adv. Wound Care 3, 445–464 (2014).

Article  Google Scholar 

Foster, D. S. et al. Integrated spatial multiomics reveals fibroblast fate during tissue repair. Proc. Natl Acad. Sci. USA 118, e2110025118 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Talbott, H. E., Mascharak, S., Griffin, M., Wan, D. C. & Longaker, M. T. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell 29, 1161–1180 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, L., Mirza, R., Kwon, Y., DiPietro, L. A. & Koh, T. J. The murine excisional wound model: contraction revisited. Wound Repair Regen. 23, 874–877 (2015).

Article  PubMed  PubMed Central 

Comments (0)

No login
gif