An accessible workflow for high-sensitivity proteomics using parallel accumulation–serial fragmentation (PASEF)

Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 537, 347–355 (2016).

Article  CAS  PubMed  Google Scholar 

Martinez-Val, A., Guzmán, U. H. & Olsen, J. V. Obtaining complete human proteomes. Annu. Rev. Genomics Hum. Genet. 23, 99–121 (2022).

Article  CAS  PubMed  Google Scholar 

Brunner, A. et al. Ultra‐high sensitivity mass spectrometry quantifies single‐cell proteome changes upon perturbation. Mol. Syst. Biol. 18, e10798 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mund, A. et al. Deep Visual Proteomics defines single-cell identity and heterogeneity. Nat. Biotechnol. 40, 1231–1240 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosenberger, F. A. et al. Spatial single-cell mass spectrometry defines zonation of the hepatocyte proteome. Nat. Methods 20, 1530–1536 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sinha, A. & Mann, M. A beginner’s guide to mass spectrometry-based proteomics. Biochem. 42, 64–69 (2020).

Article  CAS  Google Scholar 

Peters-Clarke, T. M., Coon, J. J. & Riley, N. M. Instrumentation at the leading edge of proteomics. Anal. Chem. 96, 7976–8010 (2024).

Article  CAS  PubMed  Google Scholar 

Bache, N. et al. A novel LC system embeds analytes in pre-formed gradients for rapid, ultra-robust proteomics. Mol. Cell. Proteom. 17, 2284–2296 (2018).

Article  CAS  Google Scholar 

Bader, J. M. et al. Proteome profiling in cerebrospinal fluid reveals novel biomarkers of Alzheimer’s disease. Mol. Syst. Biol. 16, e9356 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Niu, L. et al. Plasma proteome profiling discovers novel proteins associated with non‐alcoholic fatty liver disease. Mol. Syst. Biol. 15, e8793 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Fernandez-Lima, F., Kaplan, D. A., Suetering, J. & Park, M. A. Gas-phase separation using a trapped ion mobility spectrometer. Int. J. Ion. Mobil. Spectrom. 14, 93–98 (2011).

Article  Google Scholar 

Meier, F. et al. Online parallel accumulation–serial fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer. Mol. Cell. Proteom. 17, 2534–2545 (2018).

Article  CAS  Google Scholar 

Meier, F. et al. Parallel accumulation-serial fragmentation (PASEF): multiplying sequencing speed and sensitivity by synchronized scans in a trapped ion mobility device. J. Proteome Res. 14, 5378–5387 (2015).

Article  CAS  PubMed  Google Scholar 

Meier, F., Park, M. A. & Mann, M. Trapped ion mobility spectrometry and parallel accumulation–serial fragmentation in proteomics. Mol. Cell. Proteom. 20, 100138 (2021).

Article  CAS  Google Scholar 

Ludwig, C. et al. Data‐independent acquisition‐based SWATH‐MS for quantitative proteomics: a tutorial. Mol. Syst. Biol. 14, 1–23 (2018).

Article  Google Scholar 

Ting, Y. S. et al. Peptide-centric proteome analysis: an alternative strategy for the analysis of tandem mass spectrometry data. Mol. Cell. Proteom. 14, 2301–2307 (2015).

Article  CAS  Google Scholar 

Skowronek, P. et al. Rapid and in-depth coverage of the (phospho-)proteome with deep libraries and optimal window design for dia-PASEF. Mol. Cell. Proteom. 21, 100279 (2022).

Article  CAS  Google Scholar 

Meier, F. et al. diaPASEF: parallel accumulation–serial fragmentation combined with data-independent acquisition. Nat. Methods 17, 1229–1236 (2020).

Article  CAS  PubMed  Google Scholar 

Szyrwiel, L., Sinn, L., Ralser, M. & Demichev, V. Slice-PASEF: fragmenting all ions for maximum sensitivity in proteomics. Preprint at bioRxiv https://doi.org/10.1101/2022.10.31.514544 (2022).

Distler, U. et al. midiaPASEF maximizes information content in data-independent acquisition proteomics. Preprint at bioRxiv https://doi.org/10.1101/2023.01.30.526204 (2023).

Skowronek, P. et al. Synchro-PASEF allows precursor-specific fragment ion extraction and interference removal in data-independent acquisition. Mol. Cell. Proteom. 22, 100489 (2023).

Article  CAS  Google Scholar 

Lou, R. & Shui, W. Acquisition and analysis of DIA-based proteomic data: a comprehensive survey in 2023. Mol. Cell. Proteom. 23, 100712 (2024).

Article  CAS  Google Scholar 

Lesur, A. et al. Highly multiplexed targeted proteomics acquisition on a TIMS-QTOF. Anal. Chem. 93, 1383–1392 (2021).

Article  CAS  PubMed  Google Scholar 

Wallmann, G. et al. AlphaDIA enables end-to-end transfer learning for feature-free proteomics. Preprint at bioRxiv https://doi.org/10.1101/2024.05.28.596182 (2024).

Lapcik, P. et al. DiaPASEF proteotype analysis indicates changes in cell growth and metabolic switch induced by caspase-9 inhibition in chondrogenic cells. Proteomics 23, e2200408 (2023).

Article  PubMed  Google Scholar 

Xian, F., Sondermann, J. R., Varela, D. G. & Schmidt, M. Deep proteome profiling reveals signatures of age and sex differences in paw skin and sciatic nerve of naïve mice. Elife 11, e81431 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ng, Y. L. D. et al. Heterobifunctional ligase recruiters enable pan-degradation of inhibitor of apoptosis proteins. J. Med. Chem. 66, 4703–4733 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oliinyk, D. & Meier, F. Ion mobility-resolved phosphoproteomics with dia-PASEF and short gradients. Proteomics 23, e2200032 (2022).

Article  PubMed  Google Scholar 

Oliinyk, D. et al. µPhos: a scalable and sensitive platform for high-dimensional phosphoproteomics. Mol. Syst. Biol. 20, 972–995 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lou, R. et al. Benchmarking commonly used software suites and analysis workflows for DIA proteomics and phosphoproteomics. Nat. Commun. 14, 94 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mundt, F. et al. In depth profiling of the cancer proteome from the flowthrough of standard RNA-preparation kits for precision oncology. Preprint at bioRxiv https://doi.org/10.1101/2023.05.12.540582 (2023).

Viode, A. et al. A simple, time- and cost-effective, high-throughput depletion strategy for deep plasma proteomics. Sci. Adv. 9, eadf9717 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mun, D. G. et al. DIA-based proteome profiling of nasopharyngeal swabs from COVID-19 patients. J. Proteome Res. 20, 4165–4175 (2021).

Article  CAS  PubMed  Google Scholar 

Gindlhuber, J. et al. Proteomic profiling of end-stage COVID-19 lung biopsies. Clin. Proteom. 19, 46 (2022).

Article  CAS  Google Scholar 

Thielert, M. et al. Robust dimethyl‐based multiplex‐DIA doubles single‐cell proteome depth via a reference channel. Mol. Syst. Biol. 19, e11503 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gu, L. et al. Ultrasensitive proteomics depicted an in-depth landscape for the very early stage of mouse maternal-to-zygotic transition. J. Pharm. Anal. 13, 942–954 (2023).

Article  PubMed  PubMed Central 

Comments (0)

No login
gif