Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 537, 347–355 (2016).
Article CAS PubMed Google Scholar
Martinez-Val, A., Guzmán, U. H. & Olsen, J. V. Obtaining complete human proteomes. Annu. Rev. Genomics Hum. Genet. 23, 99–121 (2022).
Article CAS PubMed Google Scholar
Brunner, A. et al. Ultra‐high sensitivity mass spectrometry quantifies single‐cell proteome changes upon perturbation. Mol. Syst. Biol. 18, e10798 (2022).
Article CAS PubMed PubMed Central Google Scholar
Mund, A. et al. Deep Visual Proteomics defines single-cell identity and heterogeneity. Nat. Biotechnol. 40, 1231–1240 (2022).
Article CAS PubMed PubMed Central Google Scholar
Rosenberger, F. A. et al. Spatial single-cell mass spectrometry defines zonation of the hepatocyte proteome. Nat. Methods 20, 1530–1536 (2023).
Article CAS PubMed PubMed Central Google Scholar
Sinha, A. & Mann, M. A beginner’s guide to mass spectrometry-based proteomics. Biochem. 42, 64–69 (2020).
Peters-Clarke, T. M., Coon, J. J. & Riley, N. M. Instrumentation at the leading edge of proteomics. Anal. Chem. 96, 7976–8010 (2024).
Article CAS PubMed Google Scholar
Bache, N. et al. A novel LC system embeds analytes in pre-formed gradients for rapid, ultra-robust proteomics. Mol. Cell. Proteom. 17, 2284–2296 (2018).
Bader, J. M. et al. Proteome profiling in cerebrospinal fluid reveals novel biomarkers of Alzheimer’s disease. Mol. Syst. Biol. 16, e9356 (2020).
Article CAS PubMed PubMed Central Google Scholar
Niu, L. et al. Plasma proteome profiling discovers novel proteins associated with non‐alcoholic fatty liver disease. Mol. Syst. Biol. 15, e8793 (2019).
Article PubMed PubMed Central Google Scholar
Fernandez-Lima, F., Kaplan, D. A., Suetering, J. & Park, M. A. Gas-phase separation using a trapped ion mobility spectrometer. Int. J. Ion. Mobil. Spectrom. 14, 93–98 (2011).
Meier, F. et al. Online parallel accumulation–serial fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer. Mol. Cell. Proteom. 17, 2534–2545 (2018).
Meier, F. et al. Parallel accumulation-serial fragmentation (PASEF): multiplying sequencing speed and sensitivity by synchronized scans in a trapped ion mobility device. J. Proteome Res. 14, 5378–5387 (2015).
Article CAS PubMed Google Scholar
Meier, F., Park, M. A. & Mann, M. Trapped ion mobility spectrometry and parallel accumulation–serial fragmentation in proteomics. Mol. Cell. Proteom. 20, 100138 (2021).
Ludwig, C. et al. Data‐independent acquisition‐based SWATH‐MS for quantitative proteomics: a tutorial. Mol. Syst. Biol. 14, 1–23 (2018).
Ting, Y. S. et al. Peptide-centric proteome analysis: an alternative strategy for the analysis of tandem mass spectrometry data. Mol. Cell. Proteom. 14, 2301–2307 (2015).
Skowronek, P. et al. Rapid and in-depth coverage of the (phospho-)proteome with deep libraries and optimal window design for dia-PASEF. Mol. Cell. Proteom. 21, 100279 (2022).
Meier, F. et al. diaPASEF: parallel accumulation–serial fragmentation combined with data-independent acquisition. Nat. Methods 17, 1229–1236 (2020).
Article CAS PubMed Google Scholar
Szyrwiel, L., Sinn, L., Ralser, M. & Demichev, V. Slice-PASEF: fragmenting all ions for maximum sensitivity in proteomics. Preprint at bioRxiv https://doi.org/10.1101/2022.10.31.514544 (2022).
Distler, U. et al. midiaPASEF maximizes information content in data-independent acquisition proteomics. Preprint at bioRxiv https://doi.org/10.1101/2023.01.30.526204 (2023).
Skowronek, P. et al. Synchro-PASEF allows precursor-specific fragment ion extraction and interference removal in data-independent acquisition. Mol. Cell. Proteom. 22, 100489 (2023).
Lou, R. & Shui, W. Acquisition and analysis of DIA-based proteomic data: a comprehensive survey in 2023. Mol. Cell. Proteom. 23, 100712 (2024).
Lesur, A. et al. Highly multiplexed targeted proteomics acquisition on a TIMS-QTOF. Anal. Chem. 93, 1383–1392 (2021).
Article CAS PubMed Google Scholar
Wallmann, G. et al. AlphaDIA enables end-to-end transfer learning for feature-free proteomics. Preprint at bioRxiv https://doi.org/10.1101/2024.05.28.596182 (2024).
Lapcik, P. et al. DiaPASEF proteotype analysis indicates changes in cell growth and metabolic switch induced by caspase-9 inhibition in chondrogenic cells. Proteomics 23, e2200408 (2023).
Xian, F., Sondermann, J. R., Varela, D. G. & Schmidt, M. Deep proteome profiling reveals signatures of age and sex differences in paw skin and sciatic nerve of naïve mice. Elife 11, e81431 (2022).
Article CAS PubMed PubMed Central Google Scholar
Ng, Y. L. D. et al. Heterobifunctional ligase recruiters enable pan-degradation of inhibitor of apoptosis proteins. J. Med. Chem. 66, 4703–4733 (2023).
Article CAS PubMed PubMed Central Google Scholar
Oliinyk, D. & Meier, F. Ion mobility-resolved phosphoproteomics with dia-PASEF and short gradients. Proteomics 23, e2200032 (2022).
Oliinyk, D. et al. µPhos: a scalable and sensitive platform for high-dimensional phosphoproteomics. Mol. Syst. Biol. 20, 972–995 (2024).
Article CAS PubMed PubMed Central Google Scholar
Lou, R. et al. Benchmarking commonly used software suites and analysis workflows for DIA proteomics and phosphoproteomics. Nat. Commun. 14, 94 (2023).
Article CAS PubMed PubMed Central Google Scholar
Mundt, F. et al. In depth profiling of the cancer proteome from the flowthrough of standard RNA-preparation kits for precision oncology. Preprint at bioRxiv https://doi.org/10.1101/2023.05.12.540582 (2023).
Viode, A. et al. A simple, time- and cost-effective, high-throughput depletion strategy for deep plasma proteomics. Sci. Adv. 9, eadf9717 (2023).
Article CAS PubMed PubMed Central Google Scholar
Mun, D. G. et al. DIA-based proteome profiling of nasopharyngeal swabs from COVID-19 patients. J. Proteome Res. 20, 4165–4175 (2021).
Article CAS PubMed Google Scholar
Gindlhuber, J. et al. Proteomic profiling of end-stage COVID-19 lung biopsies. Clin. Proteom. 19, 46 (2022).
Thielert, M. et al. Robust dimethyl‐based multiplex‐DIA doubles single‐cell proteome depth via a reference channel. Mol. Syst. Biol. 19, e11503 (2023).
Article CAS PubMed PubMed Central Google Scholar
Gu, L. et al. Ultrasensitive proteomics depicted an in-depth landscape for the very early stage of mouse maternal-to-zygotic transition. J. Pharm. Anal. 13, 942–954 (2023).
Comments (0)