Sakar, M. S. et al. Cellular forces and matrix assembly coordinate fibrous tissue repair. Nat. Commun. 7, 11036 (2016).
Article CAS PubMed PubMed Central Google Scholar
Li, B. & Wang, J. H.-C. Fibroblasts and myofibroblasts in wound healing: force generation and measurement. J. Tissue Viability 20, 108–120 (2011).
Handorf, A. M., Zhou, Y., Halanski, M. A. & Li, W.-J. Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis 11, 1–15 (2015).
Article PubMed PubMed Central Google Scholar
Zanotelli, M. R. & Reinhart-King, C. A. in Advances in Experimental Medicine and Biology Vol. 1092 (eds Dong, C., Zahir, N. & Konstantopoulos, K.) 91–112 (Springer, 2018).
Hadden, W. J. et al. Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels. Proc. Natl Acad. Sci. USA 114, 5647–5652 (2017).
Article CAS PubMed PubMed Central Google Scholar
Li, S., Huang, N. F. & Hsu, S. Mechanotransduction in endothelial cell migration. J. Cell. Biochem. 96, 1110–1126 (2005).
Emon, B., Bauer, J., Jain, Y., Jung, B. & Saif, T. Biophysics of tumor microenvironment and cancer metastasis—a mini review. Comput. Struct. Biotechnol. J. 16, 279–287 (2018).
Broders-Bondon, F., Ho-Bouldoires, T. H. N., Fernandez-Sanchez, M. E. & Farge, E. Mechanotransduction in tumor progression: the dark side of the force. J. Cell Biol. 217, 1571–1587 (2018).
Wei, S. C. & Yang, J. Forcing through tumor metastasis: the interplay between tissue rigidity and epithelial–mesenchymal transition. Trends Cell Biol. 26, 111–120 (2016).
Shakya, K. M., Noyes, A., Kallin, R. & Peltier, R. E. Evaluating the efficacy of cloth facemasks in reducing particulate matter exposure. J. Expo. Sci. Environ. Epidemiol. 27, 352–357 (2017).
Article CAS PubMed Google Scholar
Bauer, J. et al. Increased stiffness of the tumor microenvironment in colon cancer stimulates cancer associated fibroblast-mediated prometastatic activin A signaling. Sci. Rep. 10, 1–11 (2020).
Emon, B. et al. Mechanosensitive changes in the expression of genes in colorectal cancer-associated fibroblasts. Sci. Data 10, 350 (2023).
Article CAS PubMed PubMed Central Google Scholar
Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).
Karagiannis, G. S. et al. Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol. Cancer Res. 10, 1403–1418 (2012).
Article CAS PubMed PubMed Central Google Scholar
Kumar, S. & Weaver, V. M. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 28, 113–127 (2009).
Bissell, M. J., Hall, H. G. & Parry, G. How does the extracellular matrix direct gene expression? J. Theor. Biol. 99, 31–68 (1982).
Article CAS PubMed Google Scholar
Bauer, J. et al. Increased stiffness of the tumor microenvironment in colon cancer leads to an increase in activin and metastatic potential. Cancer Res. 78 (Suppl. 13), abstr. 177 (2018).
Vogel, V. Mechanotransduction involving multimodular proteins: converting force into biochemical signals. Annu. Rev. Biophys. Biomol. Struct. 35, 459–488 (2006).
Article CAS PubMed Google Scholar
Emon, B. & Saif, M. T. A. A window into solid stresses within tumours. Nat. Biomed. Eng. 7, 1348–1349 (2023).
Nia, H. T. et al. Solid stress and elastic energy as measures of tumour mechanopathology. Nat. Biomed. Eng. 1, 0004 (2016).
Article PubMed PubMed Central Google Scholar
Zhang, S. et al. Intravital measurements of solid stresses in tumours reveal length-scale and microenvironmentally dependent force transmission. Nat. Biomed. Eng. 7, 1473–1492 (2023).
Article CAS PubMed PubMed Central Google Scholar
Siechen, S., Yang, S., Chiba, A. & Saif, T. Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals. Proc. Natl Acad. Sci. USA 106, 12611–12616 (2009).
Article CAS PubMed PubMed Central Google Scholar
Yuan, Z. et al. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol. Cancer 22, 1–42 (2023).
Emon, B. et al. Nuclear deformation regulates YAP dynamics in cancer associated fibroblasts. Acta Biomater. 173, 93–108 (2024).
Article CAS PubMed Google Scholar
Doha, U. et al. Disorder to order transition in cell–ECM systems mediated by cell–cell collective interactions. Acta Biomater. 154, 290–301 (2022).
Article CAS PubMed Google Scholar
Joy, M. S. H. et al. Synapses without tension fail to fire in an in vitro network of hippocampal neurons. Proc. Natl Acad. Sci. USA 120, e2311995120 (2023).
Article CAS PubMed PubMed Central Google Scholar
Sun, P. et al. Maintenance of primary hepatocyte functions in vitro by inhibiting mechanical tension-induced YAP activation. Cell Rep. 29, 3212–3222.e4 (2019).
Article CAS PubMed Google Scholar
Goffin, J. M. et al. Focal adhesion size controls tension-dependent recruitment of α-smooth muscle actin to stress fibers. J. Cell Biol. 172, 259–268 (2006).
Article CAS PubMed PubMed Central Google Scholar
Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).
Article CAS PubMed Google Scholar
McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and rhoa regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).
Article CAS PubMed Google Scholar
Ahmed, W. W., Williams, B. J., Silver, A. M. & Saif, T. A. Measuring nonequilibrium vesicle dynamics in neurons under tension. Lab Chip 13, 570–578 (2013).
Article CAS PubMed Google Scholar
Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010).
Article CAS PubMed PubMed Central Google Scholar
Porazinski, S. et al. YAP is essential for tissue tension to ensure vertebrate 3D body shape. Nature 521, 217–221 (2015).
Article CAS PubMed PubMed Central Google Scholar
Emon, B. et al. A novel method for sensor-based quantification of single/multicellular force dynamics and stiffening in 3D matrices. Sci. Adv. 7, eabf2629 (2021).
Article CAS PubMed PubMed Central Google Scholar
Elhebeary, M., Emon, M. A. B., Aydin, O. & Saif, M. T. A. A novel technique for in situ uniaxial tests of self-assembled soft biomaterials. Lab Chip 19, 1153–1161 (2019).
Article CAS PubMed PubMed Central Google Scholar
Legant, W. R. et al. Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues. Proc. Natl Acad. Sci. 106, 10097–10102 (2009).
Article CAS PubMed PubMed Central Google Scholar
Schwarz, U. S. & Soiné, J. R. D. Traction force microscopy on soft elastic substrates: a guide to recent computational advances. Biochim. Biophys. Acta Mol. Cell Res. 1853, 3095–3104 (2015).
Knoll, S. G., Ali, M. Y. & Saif, M. T. A. A novel method for localizing reporter fluorescent beads near the cell culture surface for traction force microscopy. J. Vis. Exp.
Comments (0)