A multifunctional sensor for cell traction force, matrix remodeling and biomechanical assays in self-assembled 3D tissues in vitro

Sakar, M. S. et al. Cellular forces and matrix assembly coordinate fibrous tissue repair. Nat. Commun. 7, 11036 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, B. & Wang, J. H.-C. Fibroblasts and myofibroblasts in wound healing: force generation and measurement. J. Tissue Viability 20, 108–120 (2011).

Article  PubMed  Google Scholar 

Handorf, A. M., Zhou, Y., Halanski, M. A. & Li, W.-J. Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis 11, 1–15 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Zanotelli, M. R. & Reinhart-King, C. A. in Advances in Experimental Medicine and Biology Vol. 1092 (eds Dong, C., Zahir, N. & Konstantopoulos, K.) 91–112 (Springer, 2018).

Hadden, W. J. et al. Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels. Proc. Natl Acad. Sci. USA 114, 5647–5652 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, S., Huang, N. F. & Hsu, S. Mechanotransduction in endothelial cell migration. J. Cell. Biochem. 96, 1110–1126 (2005).

Emon, B., Bauer, J., Jain, Y., Jung, B. & Saif, T. Biophysics of tumor microenvironment and cancer metastasis—a mini review. Comput. Struct. Biotechnol. J. 16, 279–287 (2018).

Broders-Bondon, F., Ho-Bouldoires, T. H. N., Fernandez-Sanchez, M. E. & Farge, E. Mechanotransduction in tumor progression: the dark side of the force. J. Cell Biol. 217, 1571–1587 (2018).

Wei, S. C. & Yang, J. Forcing through tumor metastasis: the interplay between tissue rigidity and epithelial–mesenchymal transition. Trends Cell Biol. 26, 111–120 (2016).

Shakya, K. M., Noyes, A., Kallin, R. & Peltier, R. E. Evaluating the efficacy of cloth facemasks in reducing particulate matter exposure. J. Expo. Sci. Environ. Epidemiol. 27, 352–357 (2017).

Article  CAS  PubMed  Google Scholar 

Bauer, J. et al. Increased stiffness of the tumor microenvironment in colon cancer stimulates cancer associated fibroblast-mediated prometastatic activin A signaling. Sci. Rep. 10, 1–11 (2020).

Google Scholar 

Emon, B. et al. Mechanosensitive changes in the expression of genes in colorectal cancer-associated fibroblasts. Sci. Data 10, 350 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

Karagiannis, G. S. et al. Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol. Cancer Res. 10, 1403–1418 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar, S. & Weaver, V. M. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 28, 113–127 (2009).

Bissell, M. J., Hall, H. G. & Parry, G. How does the extracellular matrix direct gene expression? J. Theor. Biol. 99, 31–68 (1982).

Article  CAS  PubMed  Google Scholar 

Bauer, J. et al. Increased stiffness of the tumor microenvironment in colon cancer leads to an increase in activin and metastatic potential. Cancer Res. 78 (Suppl. 13), abstr. 177 (2018).

Article  Google Scholar 

Vogel, V. Mechanotransduction involving multimodular proteins: converting force into biochemical signals. Annu. Rev. Biophys. Biomol. Struct. 35, 459–488 (2006).

Article  CAS  PubMed  Google Scholar 

Emon, B. & Saif, M. T. A. A window into solid stresses within tumours. Nat. Biomed. Eng. 7, 1348–1349 (2023).

Article  PubMed  Google Scholar 

Nia, H. T. et al. Solid stress and elastic energy as measures of tumour mechanopathology. Nat. Biomed. Eng. 1, 0004 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Zhang, S. et al. Intravital measurements of solid stresses in tumours reveal length-scale and microenvironmentally dependent force transmission. Nat. Biomed. Eng. 7, 1473–1492 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Siechen, S., Yang, S., Chiba, A. & Saif, T. Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals. Proc. Natl Acad. Sci. USA 106, 12611–12616 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan, Z. et al. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol. Cancer 22, 1–42 (2023).

Article  Google Scholar 

Emon, B. et al. Nuclear deformation regulates YAP dynamics in cancer associated fibroblasts. Acta Biomater. 173, 93–108 (2024).

Article  CAS  PubMed  Google Scholar 

Doha, U. et al. Disorder to order transition in cell–ECM systems mediated by cell–cell collective interactions. Acta Biomater. 154, 290–301 (2022).

Article  CAS  PubMed  Google Scholar 

Joy, M. S. H. et al. Synapses without tension fail to fire in an in vitro network of hippocampal neurons. Proc. Natl Acad. Sci. USA 120, e2311995120 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun, P. et al. Maintenance of primary hepatocyte functions in vitro by inhibiting mechanical tension-induced YAP activation. Cell Rep. 29, 3212–3222.e4 (2019).

Article  CAS  PubMed  Google Scholar 

Goffin, J. M. et al. Focal adhesion size controls tension-dependent recruitment of α-smooth muscle actin to stress fibers. J. Cell Biol. 172, 259–268 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).

Article  CAS  PubMed  Google Scholar 

McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and rhoa regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

Article  CAS  PubMed  Google Scholar 

Ahmed, W. W., Williams, B. J., Silver, A. M. & Saif, T. A. Measuring nonequilibrium vesicle dynamics in neurons under tension. Lab Chip 13, 570–578 (2013).

Article  CAS  PubMed  Google Scholar 

Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Porazinski, S. et al. YAP is essential for tissue tension to ensure vertebrate 3D body shape. Nature 521, 217–221 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Emon, B. et al. A novel method for sensor-based quantification of single/multicellular force dynamics and stiffening in 3D matrices. Sci. Adv. 7, eabf2629 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elhebeary, M., Emon, M. A. B., Aydin, O. & Saif, M. T. A. A novel technique for in situ uniaxial tests of self-assembled soft biomaterials. Lab Chip 19, 1153–1161 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Legant, W. R. et al. Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues. Proc. Natl Acad. Sci. 106, 10097–10102 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schwarz, U. S. & Soiné, J. R. D. Traction force microscopy on soft elastic substrates: a guide to recent computational advances. Biochim. Biophys. Acta Mol. Cell Res. 1853, 3095–3104 (2015).

Article  CAS  Google Scholar 

Knoll, S. G., Ali, M. Y. & Saif, M. T. A. A novel method for localizing reporter fluorescent beads near the cell culture surface for traction force microscopy. J. Vis. Exp.

Comments (0)

No login
gif