Fabrication of nonplanar tapered fibers to integrate optical and electrical signals for neural interfaces in vivo

Grosenick, L., Marshel, J. H. & Deisseroth, K. Closed-loop and activity-guided optogenetic control. Neuron 86, 106–139 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, C., Jeong, J. & Kim, S. J. Recent progress on non‐conventional microfabricated probes for the chronic recording of cortical neural activity. Sensors 19, 1069 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Imfeld, K. et al. Large-scale, high-resolution data acquisition system for extracellular recording of electrophysiological activity. IEEE Trans. Biomed. Eng. 55, 2064–2073 (2008).

Article  PubMed  Google Scholar 

Steinmetz, N. A. et al. Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. Science 372, eabf4588 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Durand, S. et al. Acute head-fixed recordings in awake mice with multiple Neuropixels probes. Nat. Protoc. 18, 424–457 (2023).

Article  CAS  PubMed  Google Scholar 

Canales, A. et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33, 277–284 (2015).

Article  CAS  PubMed  Google Scholar 

Lu, L. et al. Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain. Proc. Natl Acad. Sci. USA 115, E1374–E1383 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, F. et al. An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications. J. Neural Eng. 10, 56012 (2013).

Article  Google Scholar 

McAlinden, N. et al. Multisite microLED optrode array for neural interfacing. Neurophotonics 6, 035010 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Yang, Y. et al. Wireless multilateral devices for optogenetic studies of individual and social behaviors. Nat. Neurosci. 24, 1035–1045 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, Y. et al. Preparation and use of wireless reprogrammable multilateral optogenetic devices for behavioral neuroscience. Nat. Protoc. 17, 1073–1096 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du, J., Roukes, M. L. & Masmanidis, S. C. Dual-side and three-dimensional microelectrode arrays fabricated from ultra-thin silicon substrates. J. Micromech. Microeng. 19, 075008 (2009).

Article  Google Scholar 

Shin, S. et al. Novel four-sided neural probe fabricated by a thermal lamination process of polymer films. J. Neurosci. Methods 278, 25–35 (2017).

Article  CAS  PubMed  Google Scholar 

Stieglitz, T. & Gross, M. Flexible BIOMEMS with electrode arrangements on front and back side as key component in neural prostheses and biohybrid systems. Sens. Actuators B 83, 8–14 (2002).

Article  CAS  Google Scholar 

Seymour, J. P., Langhals, N. B., Anderson, D. J. & Kipke, D. R. Novel multi-sided, microelectrode arrays for implantable neural applications. Biomed. Microdevices 13, 441–451 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Zhao, Z. et al. Nanoelectronic coating enabled versatile multifunctional neural probes. Nano Lett. 17, 4588–4595 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, F. et al. Monolithically integrated μLEDs on silicon neural probes for high-resolution optogenetic studies in behaving animals. Neuron 88, 1136–1148 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gasemi, P., Veladi, H. & Shahabi, P. Flexible deep brain neural probes based on a parylene tube structure related content flexible poly(methyl methacrylate)-based neural probe: an affordable implementation. J. Micromech. Microeng. 28, 015012 (2018).

Article  Google Scholar 

Tamaki, S. et al. Flexible tube-shaped neural probe for recording and optical stimulation of neurons at arbitrary depths. Sens. Mater. 27, 507–523 (2015).

CAS  Google Scholar 

Wang, M.-H. et al. Flexible cylindrical neural probe with graphene enhanced conductive polymer for multi-mode BCI applications. In 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems, 502–505 (IEEE, 2017).

Spagnolo, B. et al. Tapered fibertrodes for optoelectrical neural interfacing in small brain volumes with reduced artefacts. Nat. Mater. 21, 826–835 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pisanello, F. et al. Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber. Nat. Neurosci. 20, 1180–1188 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pisano, F. et al. Depth-resolved fiber photometry with a single tapered optical fiber implant. Nat. Methods 16, 1185–1192 (2019).

Article  CAS  PubMed  Google Scholar 

Pisanello, M. et al. Tailoring light delivery for optogenetics by modal demultiplexing in tapered optical fibers. Sci. Rep. 8, 1–11 (2018).

Article  CAS  Google Scholar 

Balena, A. et al. Two-photon fluorescence-assisted laser ablation of non-planar metal surfaces: fabrication of optical apertures on tapered fibers for optical neural interfaces. Opt. Express 28, 21368–21381 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bianco, M. et al. Orthogonalization of far-field detection in tapered optical fibers for depth-selective fiber photometry in brain tissue. APL Photonics 7, 26106 (2022).

Article  CAS  Google Scholar 

Yi, L., Hou, B., Zhao, H., Tan, H. Q. & Liu, X. A double-tapered fibre array for pixel-dense gamma-ray imaging. Nat. Photon. 17, 494–500 (2023).

Article  CAS  Google Scholar 

Pisanello, M. et al. An open source three-mirror laser scanning holographic two-photon lithography system. PLoS ONE 17, e0265678–e0265678 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Snyder, A. W. & Love, J. D. Optical Waveguide Theory (Springer, 1983).

Pisanello, M. et al. Modal demultiplexing properties of tapered and nanostructured optical fibers for in vivo optogenetic control of neural activity. Biomed. Opt. Express 6, 4014–4026 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mohanty, A. et al. Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation. Nat. Biomed. Eng. 4, 223–231 (2020).

Article  CAS  PubMed  Google Scholar 

Park, S. et al. One-step optogenetics with multifunctional flexible polymer fibers. Nat. Neurosci. 20, 612–619 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pisanello, F. et al. Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics. Neuron 82, 1245–1254 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sileo, L. et al. Tapered fibers combined with a multi-electrode array for optogenetics in mouse medial prefrontal cortex. Front. Neurosci. https://doi.org/10.3389/fnins.2018.00771 (2018).

Comments (0)

No login
gif