Grosenick, L., Marshel, J. H. & Deisseroth, K. Closed-loop and activity-guided optogenetic control. Neuron 86, 106–139 (2015).
Article CAS PubMed PubMed Central Google Scholar
Kim, C., Jeong, J. & Kim, S. J. Recent progress on non‐conventional microfabricated probes for the chronic recording of cortical neural activity. Sensors 19, 1069 (2019).
Article CAS PubMed PubMed Central Google Scholar
Imfeld, K. et al. Large-scale, high-resolution data acquisition system for extracellular recording of electrophysiological activity. IEEE Trans. Biomed. Eng. 55, 2064–2073 (2008).
Steinmetz, N. A. et al. Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. Science 372, eabf4588 (2021).
Article CAS PubMed PubMed Central Google Scholar
Durand, S. et al. Acute head-fixed recordings in awake mice with multiple Neuropixels probes. Nat. Protoc. 18, 424–457 (2023).
Article CAS PubMed Google Scholar
Canales, A. et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33, 277–284 (2015).
Article CAS PubMed Google Scholar
Lu, L. et al. Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain. Proc. Natl Acad. Sci. USA 115, E1374–E1383 (2018).
Article CAS PubMed PubMed Central Google Scholar
Wu, F. et al. An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications. J. Neural Eng. 10, 56012 (2013).
McAlinden, N. et al. Multisite microLED optrode array for neural interfacing. Neurophotonics 6, 035010 (2019).
Article PubMed PubMed Central Google Scholar
Yang, Y. et al. Wireless multilateral devices for optogenetic studies of individual and social behaviors. Nat. Neurosci. 24, 1035–1045 (2021).
Article CAS PubMed PubMed Central Google Scholar
Yang, Y. et al. Preparation and use of wireless reprogrammable multilateral optogenetic devices for behavioral neuroscience. Nat. Protoc. 17, 1073–1096 (2022).
Article CAS PubMed PubMed Central Google Scholar
Du, J., Roukes, M. L. & Masmanidis, S. C. Dual-side and three-dimensional microelectrode arrays fabricated from ultra-thin silicon substrates. J. Micromech. Microeng. 19, 075008 (2009).
Shin, S. et al. Novel four-sided neural probe fabricated by a thermal lamination process of polymer films. J. Neurosci. Methods 278, 25–35 (2017).
Article CAS PubMed Google Scholar
Stieglitz, T. & Gross, M. Flexible BIOMEMS with electrode arrangements on front and back side as key component in neural prostheses and biohybrid systems. Sens. Actuators B 83, 8–14 (2002).
Seymour, J. P., Langhals, N. B., Anderson, D. J. & Kipke, D. R. Novel multi-sided, microelectrode arrays for implantable neural applications. Biomed. Microdevices 13, 441–451 (2011).
Article PubMed PubMed Central Google Scholar
Zhao, Z. et al. Nanoelectronic coating enabled versatile multifunctional neural probes. Nano Lett. 17, 4588–4595 (2017).
Article CAS PubMed PubMed Central Google Scholar
Wu, F. et al. Monolithically integrated μLEDs on silicon neural probes for high-resolution optogenetic studies in behaving animals. Neuron 88, 1136–1148 (2015).
Article CAS PubMed PubMed Central Google Scholar
Gasemi, P., Veladi, H. & Shahabi, P. Flexible deep brain neural probes based on a parylene tube structure related content flexible poly(methyl methacrylate)-based neural probe: an affordable implementation. J. Micromech. Microeng. 28, 015012 (2018).
Tamaki, S. et al. Flexible tube-shaped neural probe for recording and optical stimulation of neurons at arbitrary depths. Sens. Mater. 27, 507–523 (2015).
Wang, M.-H. et al. Flexible cylindrical neural probe with graphene enhanced conductive polymer for multi-mode BCI applications. In 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems, 502–505 (IEEE, 2017).
Spagnolo, B. et al. Tapered fibertrodes for optoelectrical neural interfacing in small brain volumes with reduced artefacts. Nat. Mater. 21, 826–835 (2022).
Article CAS PubMed PubMed Central Google Scholar
Pisanello, F. et al. Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber. Nat. Neurosci. 20, 1180–1188 (2017).
Article CAS PubMed PubMed Central Google Scholar
Pisano, F. et al. Depth-resolved fiber photometry with a single tapered optical fiber implant. Nat. Methods 16, 1185–1192 (2019).
Article CAS PubMed Google Scholar
Pisanello, M. et al. Tailoring light delivery for optogenetics by modal demultiplexing in tapered optical fibers. Sci. Rep. 8, 1–11 (2018).
Balena, A. et al. Two-photon fluorescence-assisted laser ablation of non-planar metal surfaces: fabrication of optical apertures on tapered fibers for optical neural interfaces. Opt. Express 28, 21368–21381 (2020).
Article CAS PubMed PubMed Central Google Scholar
Bianco, M. et al. Orthogonalization of far-field detection in tapered optical fibers for depth-selective fiber photometry in brain tissue. APL Photonics 7, 26106 (2022).
Yi, L., Hou, B., Zhao, H., Tan, H. Q. & Liu, X. A double-tapered fibre array for pixel-dense gamma-ray imaging. Nat. Photon. 17, 494–500 (2023).
Pisanello, M. et al. An open source three-mirror laser scanning holographic two-photon lithography system. PLoS ONE 17, e0265678–e0265678 (2022).
Article CAS PubMed PubMed Central Google Scholar
Snyder, A. W. & Love, J. D. Optical Waveguide Theory (Springer, 1983).
Pisanello, M. et al. Modal demultiplexing properties of tapered and nanostructured optical fibers for in vivo optogenetic control of neural activity. Biomed. Opt. Express 6, 4014–4026 (2015).
Article CAS PubMed PubMed Central Google Scholar
Mohanty, A. et al. Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation. Nat. Biomed. Eng. 4, 223–231 (2020).
Article CAS PubMed Google Scholar
Park, S. et al. One-step optogenetics with multifunctional flexible polymer fibers. Nat. Neurosci. 20, 612–619 (2017).
Article CAS PubMed PubMed Central Google Scholar
Pisanello, F. et al. Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics. Neuron 82, 1245–1254 (2014).
Article CAS PubMed PubMed Central Google Scholar
Sileo, L. et al. Tapered fibers combined with a multi-electrode array for optogenetics in mouse medial prefrontal cortex. Front. Neurosci. https://doi.org/10.3389/fnins.2018.00771 (2018).
Comments (0)