Pandey S, Sagnika S, Mishra BSP. A technique to handle negation in sentiment analysis on movie reviews. Proc 2018 IEEE Int Conf Commun Signal Process ICCSP. 2018;737–43. https://doi.org/10.1109/ICCSP.2018.8524421.
Hupont I, Cerezo E, Ballano S, Baldassarri S. On the origin of the methodology for the scalable fusion of affective channels in a continuous emotional space and the ‘emotional kinematics’ filtering technique - a correction. Inf Fusion. 2021;67:1–2.
Valle-Cruz D, Fernandez-Cortez V, López-Chau A, Sandoval-Almazán R. Does Twitter affect stock market decisions? Financial sentiment analysis during pandemics: a comparative study of the H1N1 and the COVID-19 periods. Cogn Comput. 2022;14(1):372–87. https://doi.org/10.1007/S12559-021-09819-8/TABLES/17.
Popescu AM, Etzioni O. Extracting product features and opinions from reviews. Nat Lang Process Text Min. 2007;9–28. https://doi.org/10.1007/978-1-84628-754-1_2/COVER.
Na JC, Khoo C, Wu PHJ. Use of negation phrases in automatic sentiment classification of product reviews. Libr Collect Acquis Tech Serv. 2005;29(2):180–91. https://doi.org/10.1016/J.LCATS.2005.04.007.
Kumar V. Spatiotemporal sentiment variation analysis of geotagged COVID-19 tweets from India using a hybrid deep learning model. Sci Rep. 2022;12(1). https://doi.org/10.1038/s41598-022-05974-6.
Sigari S, Gandomi AH. Analyzing the past, improving the future: a multiscale opinion tracking model for optimizing business performance. Human Soc Sci Commun. 2022;9(1). https://doi.org/10.1057/s41599-022-01325-y.
Taboada M, Brooke J, Tofiloski M, Voll K, Stede M. Lexicon-based methods for sentiment analysis. Comput Linguist. 2011;37(2):267–307. https://doi.org/10.1162/COLI_A_00049.
Limsopatham N, Macdonald C, McCreadie R, Ounis I. Exploiting term dependence while handling negation in medical search. SIGIR’12 - Proc Int ACM SIGIR Conf Res Dev Inf Retr. 2012;1065–66. https://doi.org/10.1145/2348283.2348471.
Xia R, Xu F, Zong C, Li Q, Qi Y, Li T. Dual sentiment analysis: considering two sides of one review. IEEE Trans Knowl Data Eng. 2015;27(8):2120–33. https://doi.org/10.1109/TKDE.2015.2407371.
Xia R, Xu F, Yu J, Qi Y, Cambria E. Polarity shift detection, elimination and ensemble: A three-stage model for document-level sentiment analysis. Inf Process Manage. 2016;52(1):36–45. https://doi.org/10.1016/J.IPM.2015.04.003.
Ghag KV, Shah K. Negation handling for sentiment classification. Proc 2nd Int Conf Comput Commun Control Autom ICCUBEA. 2016. https://doi.org/10.1109/ICCUBEA.2016.7860016.
Amalia R, Bijaksana MA, Darmantoro D. Negation handling in sentiment classification using rule-based adapted from Indonesian language syntactic for Indonesian text in Twitter. J Phys Conf Seri. 2018;971(1). https://doi.org/10.1088/1742-6596/971/1/012039.
Ljajić A, Marovac U. Improving sentiment analysis for twitter data by handling negation rules in the Serbian language. Comput Sci Inf Syst. 2019;16(1):289–311. https://doi.org/10.2298/CSIS180122013L.
Gupta I, Joshi N. Feature-Based Twitter Sentiment Analysis with Improved Negation Handling. IEEE Trans Comput Soc Syst. 2021;8(4):917–27. https://doi.org/10.1109/TCSS.2021.3069413.
Mao R, Li X. Bridging towers of multi-task learning with a gating mechanism for aspect-based sentiment analysis and sequential metaphor identification. 35th AAAI Conf Artif Intell AAAI. 2021;15:13534–542. https://doi.org/10.1609/aaai.v35i15.17596.
Singh PK, Paul S. Deep learning approach for negation handling in sentiment analysis. IEEE Access. 2021;9:102579–92. https://doi.org/10.1109/ACCESS.2021.3095412.
Albatayneh NA, Ghauth KI, Chua FF. Discriminate2Rec: negation-based dynamic discriminative interest-based preference learning for semantics-aware content-based recommendation. Expert Syst Appl. 2022;199. https://doi.org/10.1016/j.eswa.2022.116988.
Lal U, Kamath P. Effective negation handling approach for sentiment classification using synsets in the WordNet lexical database. 2022 1st Int Conf Electr Electron Inf Commun Technol ICEEICT. 2022. https://doi.org/10.1109/ICEEICT53079.2022.9768641.
Mao R, Liu Q, He K, Li W, Cambria E. The Biases of pre-trained language models: an empirical study on prompt-based sentiment analysis and emotion detection. IEEE Trans Affect Comput. 2022. https://doi.org/10.1109/TAFFC.2022.3204972.
Zhang H, et al. Leveraging statistical information in fine-grained financial sentiment analysis. World Wide Web. 2022;25(2):513–31. https://doi.org/10.1007/S11280-021-00993-1/TABLES/5.
Ghadikolaei AS, Esbouei SK, Antuchevičienė J. Applying fuzzy MCDM for financial performance evaluation of Iranian companies. Technol Econ Dev Econ. 2014;20(2):274–91. https://doi.org/10.3846/20294913.2014.913274.
Esuli A, Sebastiani F. SENTIWORDNET: A publicly available lexical resource for opinion mining. Proc 5th Int Conf Lang Resour Eval LREC. 2006;417–22 [Online]. Available: http://nmis.isti.cnr.it/sebastiani/Publications/2007TR02.pdf. Accessed Sep 23, 2021.
Savanur SR, Sumathi R. SentiNeg: algorithm to process negations at sentence level in sentiment analysis. Int J Softw Innov. 2023;11(1). https://doi.org/10.4018/IJSI.315741.
Wang Z, Hu Z, Ho SB, Cambria E, Tan AH. MiMuSA—mimicking human language understanding for fine-grained multi-class sentiment analysis. Neural Comput Appl. 2023. https://doi.org/10.1007/s00521-023-08576-z.
Punetha N, Jain G. Sentiment Analysis of Stock Prices and News Headlines Using the MCDM Framework. 2023;1–4. https://doi.org/10.1109/aist55798.2022.10065221.
Punetha N, Jain G. Aspect and orientation-based sentiment analysis of customer feedback using mathematical optimization models. Knowl Inf Syst. 2023;1–30. https://doi.org/10.1007/s10115-023-01848-z.
Punetha N, Jain G. Game theory and MCDM-based unsupervised sentiment analysis of restaurant reviews. Appl Intell. 2023;1–22. https://doi.org/10.1007/s10489-023-04471-1.
Punetha N, Jain G. Unsupervised sentiment analysis of Hindi reviews using MCDM and game model optimization techniques. Sādhanā. 2023;48(4):1–13. https://doi.org/10.1007/S12046-023-02255-4.
Punetha N, Jain G. Bayesian game model based unsupervised sentiment analysis of product reviews. Expert Syst Appl. 2023;214: 119128. https://doi.org/10.1016/j.eswa.2022.119128.
Ghaleb AM, Kaid H, Alsamhan A, Mian SH, Hidri L. Assessment and comparison of various MCDM approaches in the selection of manufacturing process. Adv Mater Sci Eng. 2020;2020. https://doi.org/10.1155/2020/4039253.
Comments (0)