Association A. 2019 Alzheimer’s disease facts and figures. Alzheimers Dement. 2019;15(3):321–87.
Borroni B, Anchisi D, Paghera B, et al. Combined 99mTc-ECD SPECT and neuropsychological studies in MCI for the assessment of conversion to AD. Neurobiol Aging. 2006;27(1):24–31.
Zaudig M. Mild cognitive impairment in the elderly. Curr Opin Psychiatry. 2002;15(4):387–93.
Pannunzi M, Hindriks R, Bettinardi RG, et al. Resting-state fMRI correlations: from link-wise unreliability to whole brain stability. Neuroimage. 2017;157:250–62.
Wang S, Zhan Y, Zhang Y, et al. Abnormal long-and short-range functional connectivity in adolescent-onset schizophrenia patients: a resting-state fMRI study. Prog Neuropsychopharmacol Biol Psychiatry. 2018;81:445–51.
Zhang W, Liu X, Zhang Y, et al. Disrupted functional connectivity of the hippocampus in patients with hyperthyroidism: evidence from resting-state fMRI. Eur J Radiol. 2014;83(10):1907–13.
de Vos F, Koini M, Schouten TM, et al. A comprehensive analysis of resting state fMRI measures to classify individual patients with Alzheimer’s disease. Neuroimage. 2018;167:62–72.
Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences. 1990;87(24):9868–72.
Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8(9):700–11.
Logothetis NK, Wandell BA. Interpreting the BOLD signal. Annu Rev Physiol. 2004;66:735–69.
Heeger DJ, Ress D. What does fMRI tell us about neuronal activity? Nat Rev Neurosci. 2002;3(2):142–51.
Brittin CA, Cook SJ, Hall DH, et al. A multi-scale brain map derived from whole-brain volumetric reconstructions. Nature. 2021;591(7848):1–6.
Yan W, Calhoun V, Song M, et al. Discriminating schizophrenia using recurrent neural networks applied on time courses of multi-site FMRI data. EBioMedicine. 2019;47:543–52.
Wee CY, Yap PT, Zhang D, et al. Identification of MCI individuals using structural and functional connectivity networks. Neuroimage. 2012;59(3):2045–56.
Zhang X, Hu B, Ma X, et al. Resting-state whole-brain functional connectivity networks for MCI classification using L2-regularized logistic regression. IEEE Trans Nanobiosci. 2015;14(2):237–47.
Celone KA, Calhoun VD, Dickerson BC, et al. Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: an independent component analysis. J Neurosci. 2006;26(40):10222–31.
Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A. 2005;102:9673–8.
Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp. 2005;26:15–29.
Zhou Y, Liang M, Tian L, et al. Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophr Res. 2007;97(1–3):194–205.
Shao H, Du X, Du X, et al. Research progress in the role of the posterior cingulate cortex/cuneus as a key node in the resting state functional networks. Magn Reson Imaging. 2011;2(3):215–7.
Barbey AK, Barsalou LW. Reasoning and problem solving: models. Encyclopedia of Neuroscience. 2009;8:35–43.
Zhang C, Ye M, Lei L, Qian Y. Feature selection for cross-scene hyperspectral image classification using cross-domain I-ReliefF. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2021;14:5932–49.
Huang R, Jiang W, Sun G. Manifold-based constraint Laplacian score for multi-label feature selection. Pattern Recogn Lett. 2018;112:346–52.
Satorra A, Bentler PM. Comparative analysis of feature selection algorithms for computational personality prediction from social media. IEEE Transactions on Computational Social Systems. 2020;7(3):587–99.
Wu H, Kong L, Zeng Y, et al. Resting-state brain connectivity via multivariate EMD in mild cognitive impairment. IEEE Trans Cogn Dev Syst. 2021;14(2):552-64.
Sotiropoulos SN, Zalesky A. Building connectomes using diffusion MRI: why, how and but. NMR Biomed. 2019;32(4): e3752.
Ibrahim B, Suppiah S, Ibrahim N, et al. Diagnostic power of resting-state fMRI for detection of networks connectivity in Alzheimer’s disease and mild cognitive impairment: a systematic review[J]. Hum Brain Mapp. 2021;42(9):2941–68.
Huang J, Biao J, Weiping D, et al. Brain network analysis methods and their applications[J]. Data Acquis Process. 2021;36(4):16.
Saetia S, Yoshimura N, Koike Y. Constructing brain connectivity model using causal networks reconstruction approach. Front Neuroinform. 2021;15:5.
Wang Z, Liang P, Jia X, et al. The baseline and longitudinal changes of PCC connectivity in mild cognitive impairment: a combined structure and resting-state fMRI study. PLoS ONE. 2012;7(5): e36838.
Wu H, Luo J, Lu X, et al. 3D transfer learning networks for classification of Alzheimer’s disease with MRI. Int J Mach Learn Cybern. 2022;13(7):1997–2011.
Farràs-Permanyer L, Guàrdia-Olmos J, Peró-Cebollero M. Mild cognitive impairment and fMRI studies of brain functional connectivity: the state of the art. Front Psychol. 2015;6:1095.
Liang P, Wang Z, Yang Y, et al. Functional disconnection and compensation in mild cognitive impairment: evidence from DLPFC connectivity using resting-state fMRI. PLoS ONE. 2011;6(7): e22153.
Ju R, Hu C, Li Q. Early diagnosis of Alzheimer’s disease based on resting-state brain networks and deep learning. IEEE/ACM Trans Comput Biol Bioinf. 2017;16:244–57.
Hansen EC, Battaglia D, Spiegler A, Deco G, Jirsa VK. Functional connectivity dynamics: modeling the switching behavior of the resting state. NeuroImage. 2015;105:525–35.
Van Den Heuvel MP, Pol HEH. Exploring the brain networks: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol. 2010;20(8):519–34.
Yokoi T, Watanabe H, Yamaguchi H, et al. Involvement of the precuneus/posterior cingulate cortex is significant for the development of Alzheimer’s disease: a PET (THK5351, PiB) and resting fMRI study. Frontiers in Aging Neuroscience. 2018;10: 304.
Yahata N, Morimoto J, Hashimoto R, et al. A small number of abnormal brain connections predicts adult autism spectrum disorder. Nat Commun. 2016;7(1):1–12.
Zhang Y, Huo Y, Lannan Wu, Dong Z. A review of dimension reduction techniques and methods. J Sichuan Ordnance Eng. 2010;31(10):1–7.
Maldonado S, Weber R. A wrapper method for feature selection using support vector machines. Inf Sci. 2009;179(13):2208–17.
Lei Ge, Guozheng Li, Mingyu Y. Embedded feature selection based on multi-label learning. J Nanjing Univ: Nat Sci. 2009;45(5):671–6.
Yan CG, Wang XD, Zuo XN, et al. DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinformatics. 2016;14(3):339–51.
Comments (0)