Attribute Reduction in a Hybrid Decision Information System Based on Fuzzy Conditional Information Entropy Using Iterative Model and Matrix Operation

Song JJ, Tsang ECC, Chen DG, Yang XB. Minimal decision cost reduction in fuzzy decision theoretic rough set mode. Knowl-Based Syst. 2017;126(6):104–12.

Article  MATH  Google Scholar 

Sang BB, Yang LZ, Chen HM, Wang SW. Incremental attribute reduction algorithm in dominance-based rough set. Comp Sci. 2020;47(8):137–43.

MATH  Google Scholar 

Yang XB, Yao YY. Ensemble selector for attribute reduction. Appl Soft Comput. 2018;70:1–11.

Article  MATH  Google Scholar 

Jiang ZH, Yang XB, Yu HL, Liu DN, Wang PX, Qian YH. Accelerator for multi-granularity attribute reduction. Knowl Based Syst. 2019;177(04):145–58.

Article  MATH  Google Scholar 

Yang XB, Liang SC, Yu HL, Gao S, Qian YH. Pseudolabel neighborhood rough set: measures and attribute reductions. Int J Approximate Reasoning. 2019;105(2):112–29.

Article  MATH  Google Scholar 

Wang CZ, He Q, Shao MW, Hu QH. Feature selection based on maximal neighborhood discernibility. Int J Mach Learn Cybern. 2018;9:1929–40.

Article  MATH  Google Scholar 

Zhou P, Hu XG, Li PP, Wu XD. Online streaming feature selection using adapted neighborhood rough set. Inf Sci. 2019;481(05):258–79.

Article  MATH  Google Scholar 

Xia SY, Zhang H, Li WH, Wang GY, Giem E, Chen ZZ. GBNRS: a novel rough set algorithm for fast adaptive attribute reduction in classification. IEEE Trans Knowl Data Eng. 2022;34(3):1231–2124. https://doi.org/10.1109/TKDE.2020.2997039.

Article  MATH  Google Scholar 

Qian YH, Liang YH, Pedrycz W, Dang CY. Positive approximation: an accelerator for attribute reduction in rough set theory. Artif Intell. 2010;174(09/10):597–618.

Article  MathSciNet  MATH  Google Scholar 

Li ZW, Liu XF, Zhang GQ, Xie NX, Wang SC. A multi-granulation decision theoretic rough set method for distributed fc decision information systems: an application in medical diagnosis. Appl Soft Comput. 2017;56:233–44.

Article  MATH  Google Scholar 

Liao SJ, Lin YD, Li JJ, Li HL, Qian YH. Attribute-scale selection for hybrid data with test cost constraint: the approach and uncertainty measures. Int J Intell Syst. 2021;37(6):3297–333.

Article  MATH  Google Scholar 

Mi JS, Leung Y, Wu WZ. An uncertainty measure in partition-based fuzzy rough sets. Int J Gen Syst. 2005;34(01):77–90.

Article  MathSciNet  MATH  Google Scholar 

Zeng AP, Li TR, Hu J, Chen HM, Luo C. Dynamical updating fuzzy rough approximations for hybrid data under the variation of attribute values. Inf Sci. 2017;378(02):363–88.

Article  MathSciNet  MATH  Google Scholar 

Yang L, Zhang XY, Xu XH, Sang BB. Multi-granulation rough sets and uncertainty measurement for multi-source fuzzy information system. Int J Fuzzy Syst. 2019;21(6):1919–37.

Article  MathSciNet  MATH  Google Scholar 

Zhang X, Mei CL, Chen DG, Li JH. Feature selection in mixed data: a method using a novel fuzzy rough set-based information entropy. Pattern Recogn. 2016;56:1–15.

Article  MATH  Google Scholar 

Wang CZ, Wang Y, Shao MW, Qian YH, Chen DG. Fuzzy rough attribute reduction for categorical data. IEEE Trans Fuzzy Syst. 2020;28(05):818–30.

Article  MATH  Google Scholar 

Singh S, Shreevastava S, Som T, Somani G. A fuzzy similarity-based rough set approach for attribute selection in set-valued information systems. Soft Comput. 2020;24:4675–91.

Article  MATH  Google Scholar 

Jain P, Tiwari AK, Som T. A fitting model based intuitionistic fuzzy rough feature selection. Eng Appl Artif Intell. 2020;89:1–13.

Article  MATH  Google Scholar 

Sang BB, Chen HM, Yang L, Li TR, Xu WH. Incremental feature selection using a conditional entropy based on fuzzy dominance neighborhood rough sets. IEEE Trans Fuzzy Syst. 2021;30(6):1683–97.

Article  MATH  Google Scholar 

Huang ZH, Li JJ. Discernibility measures for fuzzy β covering and their application. IEEE Tansaction on Cybernetics. 2022;52(9):9722–35.

Article  MATH  Google Scholar 

Wang CZ, Wang C, Qian YH, Leng Q. Feature selection based on weighted fuzzy rough sets. IEEE Trans Fuzzy Syst. 2024;32(7):4027–37.

Article  MATH  Google Scholar 

Wang CZ, Qian YH, Ding W, Fan X. Feature selection with fuzzy-rough minimum classification error criterion. IEEE Trans Fuzzy Syst. 2021;30(8):2930–42.

Article  MATH  Google Scholar 

Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27:379–423.

Article  MathSciNet  MATH  Google Scholar 

Hempelmann CF, Sakoglu U, Gurupur P, Jampana S. An entropy-based evaluation method for knowledge bases of medical information systems. Expert Syst Appl. 2016;46:262–73.

Article  Google Scholar 

Delgado A, Romero I. Environmental conflict analysis using an integrated grey clustering and entropy-weight method: a case study of a mining project in Peru. Environ Model Soft. 2016;77:108–21.

Article  MATH  Google Scholar 

Navarrete J, Viejo D, Cazorla M. Color smoothing for RGB-D data using entropy information. Appl Soft Comput. 2016;46:361–80.

Article  Google Scholar 

Kadkhodaei HR, Moghadam AME, Dehghan M. HBoost: a heterogeneous ensemble classifier based on the Boosting method and entropy measurement. Expert Syst Appl. 2020;157(02):113482.

Article  Google Scholar 

Dai JH, Hu H, Zheng GJ, Hu QH, Han HF, Shi H. Attribute reduction in interval-valued information systems based on information entropies. Front Inf Technol Electron Eng. 2016;17(09):919–28.

Article  MATH  Google Scholar 

Liang BH, Wang L, Liu Y. Attribute reduction based on improved information entropy. Intell Fuzzy Syst. 2018;36(01):1–10.

MATH  Google Scholar 

Wang YB, Chen XJ, Dong K. Attribute reduction via local conditional entropy. Int J Mach Learn Cybern. 2019;10:1–19.

Article  MATH  Google Scholar 

Zhang QL, Chen YY, Zhang GQ, Li ZW, Chen LJ, Wen CF. New uncertainty measurement for categorical data based on fuzzy information structures: An application in attribute reduction. Inf Sci. 2021;580:541–77.

Article  MathSciNet  MATH  Google Scholar 

Bui QT, Ngo MP, Snasel V, Pedrycz W, Vo B. Information measures based on similarity under neutrosophic fuzzy environment and multi-criteria decision problems. Eng Appl Artif Intell. 2023;122:106026.

Article  MATH  Google Scholar 

Chai JS, Selvachandran G, Smarandache F, Gerogiannis VC, Son LH, Bui QT, Vo B. New similarity measures for single-valued neutrosophic sets with applications in pattern recognition and medical diagnosis problems. Complex Intell Syst. 2021;7:703–23.

Article  Google Scholar 

Wang CZ, Huang Y, Shao MW, Chen DG. Uncertainty measures for general fuzzy relations. Fuzzy Sets Syst. 2019;360(1):82–96.

MathSciNet  MATH  Google Scholar 

Pawlak Z. Rough sets: theoretical aspects of reasoning about data. Dordrecht: Kluwer Academic Publishers; 1991.

Book  MATH  Google Scholar 

UCI datasets. https://archive.ics.uci.edu/ml/ datasets.php.

Friedman M. A comparison of alternative tests of significance for the problem of m rankings. Ann Math Stat. 1940;11(1):86–92.

Article  MathSciNet  MATH  Google Scholar 

Demsar J. Statistical comparison of classifiers over multiple data sets. J Mach Learn Res. 2006;7:1–30.

MathSciNet  MATH  Google Scholar 

Hu Q, Yu D, Xie Z. Information-preserving hybrid data reduction based on fuzzy-rough techniques. Pattern Recogn Lett. 2006;27(05):414–23.

Article  MATH  Google Scholar 

Comments (0)

No login
gif