Picard RW. Automating the recognition of stress and emotion: From lab to real-world impact. IEEE Multimedia. 2016;23(3):3–7.
Zulqarnain M, Shah H, Ghazali R, Alqahtani O, Sheikh R, Asadullah M. Attention aware deep learning approaches for an efficient stress classification model. Brain Sci. 2023;13(7):994.
Sangeetha S, Suruthika S, Keerthika S, Vinitha S, Sugunadevi M, " “Diagnosis of pneumonia using image recognition techniques”, In Proceedings of 7th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, pp. 1332–1337, 2023.
Arsalan A, Majid M. Human stress classification during public speaking using physiological signals. Comput Biol Med. 2021;133:104377.
Ramteke RB, Thool VR, “Heart rate variability-based mental stress detection using deep learning approach”, In Applied Information Processing Systems: Proceedings of ICCET 2021, pp. 51–61, Springer Singapore, 2022.
Sangeetha S, Baskar K, Kalaivaani PCD, Kumaravel T, “Deep learning-based early Parkinson’s disease detection from brain MRI image”, In Proceedings of International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, pp. 490–495, 2023.
Majid M, Arsalan A, Anwar SM, “A multimodal perceived stress classification framework using wearable physiological sensors”, arXiv preprint arXiv:2206.10846, 2022.
Khadilkar A, Wang J, Rai R. Deep learning–based stress prediction for bottom-up SLA 3D printing process. Int J Adv Manuf Technol. 2019;102:2555–69.
Moser MK, Resch B, Ehrhart M, “An individual-oriented algorithm for stress detection in wearable sensor measurements”, IEEE Sens J. 2023.
Sridhar AP, Pramodhani RJ, Priya SP, Kumar CK. “Human stress detection using deep learning”, International Journal of Progressiveresearch in Engineering Management and Science (IJPREMS). 2023;3(4):428–35.
Ashok Babu P, Rai Anjani Kumar, Ramesh Janjhyam Venkata Naga, Nithyasri A, Sangeetha S, Kshirsagar Pravin R, Rajendran A, Rajaram A, Dilipkumar S. An explainable deep learning approach for oral cancer detection. J Elect Eng Technol. 2023;19:1837.
Rabbani S, Khan N. Contrastive self-supervised learning for stress detection from ECG data. Bioengineering. 2022;9(8):374.
Sharma SD, Sharma S, Singh R, Gehlot A, Priyadarshi N, Twala B. Stress detection system for working pregnant women using an improved deep recurrent neural network. Electronics. 2022;11(18):2862.
Alshamrani M. An advanced stress detection approach based on processing data from wearable wrist devices. Int J Adv Comput Sci Appl. 2021;12:399–405.
Yu H, Sano A, “Semi-supervised learning and data augmentation in wearable-based momentary stress detection in the wild”, arXiv preprint arXiv:2202.12935, 2022.
Rashid N, Mortlock T, Al Faruque MA. Stress detection using context-aware sensor fusion from wearable devices. IEEE Int Things J. 2023;10(16):14114–27.
Pankajavalli PB, Karthick GS, Sakthivel R. An efficient machine learning framework for stress prediction via sensor integrated keyboard data. IEEE Access. 2021;9:95023–35.
Human stress detection database is taken from https://www.kaggle.com/datasets/laavanya/stress-level-detection. Accessed Dec 2023.
Jain YK, Bhandare SK. Min max normalization based data perturbation method for privacy protection. Int J Comp Commun Technol. 2011;2(8):45–50.
Li P, Li D, Li W, Gong S, Fu Y, Hospedales TM. “A simple feature augmentation for domain generalization”, In Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021. p. 8886–8895.
Krinidis S, Chatzis V. A robust fuzzy local information C-means clustering algorithm. IEEE Trans Image Process. 2010;19(5):1328–37.
Article MathSciNet Google Scholar
Bodyanskiy YV, Tyshchenko OK. A hybrid cascade neuro-fuzzy network with pools of extended neo-fuzzy neurons and its deep learning. Int J Appl Math Comp Sci. 2019;29(3):477.
Ishibuchi H, Nozaki K, Yamamoto N, Tanaka H. Construction of fuzzy classification systems with rectangular fuzzy rules using genetic algorithms. Fuzzy Sets Syst. 1994;65(2–3):237–53.
Article MathSciNet Google Scholar
Mangai SA, Sankar BR, Alagarsamy K. “Taylor series prediction of time series data with error propagated by artificial neural network.” Int J Comp Appl. 2014;89(1):41.
Kabir HD, Abdar M, Khosravi A, Jalali SMJ, Atiya AF, Nahavandi S, Srinivasan D. Spinalnet: deep neural network with gradual input. IEEE Trans Artif Intel. 2022;4:1165–77.
Chopra P, “Progressive spinnet architecture for fc layers”, arXiv preprint arXiv:2103.11373, 2021.
Rezaee K, Yang X, Khosravi MR, Zhang R, Lin W, Jeon G. Fusion-based learning for stress recognition in smart home: an IoMT framework. Build Environ. 2022;216:108988.
Tanwar R, Phukan OC, Singh G, Pal PK, Tiwari S. Attention based hybrid deep learning model for wearable based stress recognition. Eng Appl Artif Intell. 2024;127:107391.
Stress detection dataset is taken from https://www.kaggle.com/competitions/soaicommunitydatathon23-stress-detection/data. Accessed Dec 2023.
Albahri AS, Hamid RA, Abdulnabi AR, Albahri OS, Alamoodi AH, Deveci M, Pedrycz W, Alzubaidi L, Santamaría J, Gu Y. Fuzzy decision-making framework for explainable golden multi-machine learning models for real-time adversarial attack detection in vehicular ad-hoc networks. Inform Fusion. 2024;105:102208.
Wang W, Shao J, Jumahong H. Fuzzy inference-based LSTM for long-term time series prediction. Sci Rep. 2023;13(1):20359.
Ramesh R, Jeyakarthic M. Fuzzy support vector machine based outlier detection for financial credit score prediction system. J Wireless Mob Netw Ubiquitous Comp Depend Appl. 2023;14:60–73.
Comments (0)