Pradhan J, Ajad A, Pal AK, Banka H. Multi-level colored directional motif histograms for content-based image retrieval. Vis Comput. 2020;36(9):1847–68. https://doi.org/10.1007/s00371-019-01773-9.
Xiong ZG, Tang ZW, Chen XW, Zhang XM, Zhang KB, Ye CH. Research on image retrieval algorithm based on combination of color and shape features. J Signal Process Syst. 2021;93:139–46. https://doi.org/10.1007/s11265-019-01508-y.
Zhang Z, Wang L, Wang Y, Zhou L, Zhang J, Chen F. Dataset-driven unsupervised object discovery for region-based instance image retrieval. IEEE Trans Pattern Anal Mach Intell. 2023;45(1):247–63. https://doi.org/10.1109/TPAMI.2022.3141433.
Zhou J, Gan J, Gao W, Liang A. Image retrieval based on aggregated deep features weighted by regional significance and channel sensitivity. Inform Sci. 2021;577:69–80. https://doi.org/10.1016/j.ins.2021.06.002.
Article MathSciNet MATH Google Scholar
Liu GH, Yang JY. Deep-seated features histogram: a novel image retrieval method. Pattern Recogn. 2021;116:107926. https://doi.org/10.1016/j.patcog.2021.107926.
Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol. 1962;160(1):106–54. https://doi.org/10.1113/jphysiol.1962.sp006837.
Liu GH, Yang JY. Exploiting color volume and color difference for salient region detection. IEEE Trans Image Process. 2019;28(1):6–16. https://doi.org/10.1109/TIP.2018.2847422.
Article MathSciNet MATH Google Scholar
Adelson EH, Bergen JR. The plenoptic function and the elements of early vision. Comput Models Vis Process. 1991;1(2):3–20.
Liu GH, Yang JY, Li ZY. Content-based image retrieval using computational visual attention model. Pattern Recogn. 2015;48(8):2554–66. https://doi.org/10.1016/j.patcog.2015.02.005.
Srivastava D, Wadhvani R, Gyanchandani M. A review: color feature extraction methods for content-based image retrieval. Int J Comput Eng Manag. 2015;18(3):9–13.
Hung CC, Song E, Lan Y. Image texture analysis, Springer, Cham, 2019; https://doi.org/10.1007/978-3-030-13773-1.
Jiebo Luo, Crandall D. Color object detection using spatial-color joint probability functions. IEEE Trans Image Process. 2006;15(6):1443–53. https://doi.org/10.1109/TIP.2006.871081.
Liu GH, Li ZY, Zhang L, Xu Y. Image retrieval based on micro-structure descriptor. Pattern Recognit. 2011;44(9):2123–33. https://doi.org/10.1016/j.patcog.2011.02.003.
Zhang D, Lu G. Review of shape representation and description techniques. Pattern Recogn. 2004;37(1):1–19. https://doi.org/10.1016/j.patcog.2003.07.008.
Yap PT, Paramesran R, Ong SH. Image analysis using Hahn moments. IEEE Trans Pattern Anal Mach Intell. 2007;29(11):2057–62. https://doi.org/10.1109/TPAMI.2007.70709.
Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vision. 2004;60:91–110. https://doi.org/10.1023/B:VISI.0000029664.99615.94.
Bay H, Ess A, Tuytelaars T, Gool LV. Speeded-up robust features (SURF). Comput Vis Image Underst. 2008;110(3):346–59. https://doi.org/10.1016/j.cviu.2007.09.014.
Zheng L, Yang Y, Tian Q. SIFT meets CNN: a decade survey of instance retrieval. IEEE Trans Pattern Anal Mach Intell. 2018;40(5):1224–44. https://doi.org/10.1109/TPAMI.2017.2709749.
Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst. 2012;25. https://doi.org/10.1145/3065386.
Kalantidis Y, Mellina C, Osindero S. Cross-dimensional weighting for aggregated deep convolutional features. Proceedings of the European Conference on Computer Vision, Springer, Cham, 2016, pp. 685–701; https://doi.org/10.1007/978-3-319-46604-0_48.
Zhu J, Wang J, Pang S, Guan W, Li Z, Li Y, et al. Co-weighting semantic convolutional features for object retrieval. J Vis Commun Image Represent. 2019;62:368–80. https://doi.org/10.1016/j.jvcir.2019.06.006.
Pang S, Zhu J, Wang J, Ordonez V, Xue J. Building discriminative CNN image representations for object retrieval using the replicator equation. Pattern Recogn. 2018;83:150–60. https://doi.org/10.1016/j.patcog.2018.05.010.
Li Y, Kong X, Zheng L, Tian Q. Exploiting hierarchical activations of neural network for image retrieval. Proceedings of the 24th ACM International Conference on Multimedia, 2016, pp. 132–136; https://doi.org/10.1145/2964284.2967197.
Liu GH, Yang JY. Exploiting deep textures for image retrieval. Int J Mach Learn Cybern. Feb.2023;14(2):483–94. https://doi.org/10.1007/s13042-022-01645-0.
Lu Z, Liu GH, Lu F, Zhang BJ. Image retrieval using dual-weighted deep feature descriptor. Int J Mach Learn Cybern. 2023;14(3):643–53. https://doi.org/10.1007/s13042-022-01654-z.
Liu GH, Li ZY, Yang JY, Zhang D. Exploiting sublimated deep features for image retrieval. Pattern Recogn. 2024;147:110076. https://doi.org/10.1016/j.patcog.2023.110076.
Arandjelović R, Gronat P, Torii A, Pajdla T, Sivic J. NetVLAD: CNN architecture for weakly supervised place recognition. IEEE Trans Pattern Anal Mach Intell. 2018;40(6):1437–51. https://doi.org/10.1109/TPAMI.2017.2711011.
Radenović F, Tolias G, Chum O. Fine-tuning CNN image retrieval with no human annotation. IEEE Trans Pattern Anal Mach Intell. 2019;41(7):1655–68. https://doi.org/10.1109/TPAMI.2018.2846566.
Xu Y, Shamsolmoali P, Granger E, Nicodeme C, Gardes L, Yang J. TransVLAD: multi-scale attention-based global descriptors for visual geo-localization. 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2023, pp. 2839–2848; https://doi.org/10.1109/WACV56688.2023.00286.
Caron M, Touvron H, Misra I, Jegou H, Mairal J, Bojanowski P, et al. Emerging properties in self-supervised vision transformers. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 2021, pp. 9630–9640; https://doi.org/10.1109/ICCV48922.2021.00951.
Radford A, Kim JW, Hallacy C, Ramesh A, Goh G, Agarwal S, et al. Learning transferable visual models from natural language supervision. In: International conference on machine learning. PMLR; 2021. pp. 8748–63. https://proceedings.mlr.press/v139/radford21a/radford21a.pdf.
Li J, Li D, Xiong C, Hoi S. Blip: bootstrapping language-image pre-training for unified vision-language understanding and generation. In: International conference on machine learning. PMLR. 2022;12888–12900. https://proceedings.mlr.press/v162/li22n/li22n.pdf.
Geirhos R, Rubisch P, Michaelis C, Bethge M, Wichmann FA, Brendel W. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. In: International conference on learning representations. 2018. https://openreview.net/forum?id=Bygh9j09KX.
Meester MJ, Baslamisli AS. SAR image edge detection: review and benchmark experiments. Int J Remote Sens. 2022;43(14):5372–438. https://doi.org/10.1080/01431161.2022.2131480.
Xu J, Wang C, Qi C, Shi C, Xiao B. Unsupervised semantic-based aggregation of deep convolutional features. IEEE Trans Image Process. 2019;28(2):601–11. https://doi.org/10.1109/TIP.2018.2867104.
Article MathSciNet MATH Google Scholar
UFLDL Tutorial. PCA whitening. http://ufdl.stanford.edu/tutorial/unsupervised/PCAWhitening/. Accessed 25 Sep 2022.
Lu F, Liu GH. Image retrieval using object semantic aggregation histogram. Cognitive Computation, pp. 1–12, 2023; https://doi.org/10.1007/s12559-023-10143-6.
Philbin J, Chum O, Isard M, Sivic J, Zisserman A. Object retrieval with large vocabularies and fast spatial matching. 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 2007, pp. 1–8; https://doi.org/10.1109/CVPR.2007.383172.
Philbin J, Chum O, Isard M, Sivic J, Zisserman A. Lost in quantization: improving particular object retrieval in large scale image databases. 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 2008, pp. 1–8; https://doi.org/10.1109/CVPR.2008.4587635.
Radenovic F, Iscen A, Tolias G, Avrithis Y, Chum O. Revisiting Oxford and Paris: large-scale image retrieval benchmarking. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 5706–5715; https://doi.org/10.1109/CVPR.2018.00598.
Jégou H, Douze M, Schmid C. Hamming embedding and weak geometric consistency for large scale image search. Computer Vision – ECCV, vol. 5302, pp. 304–317, 2008; https://doi.org/10.1007/978-3-540-88682-2_24.
Pang S, Ma J, Xue J, Zhu J, Ordonez V. Deep feature aggregation and image re-ranking with heat diffusion for image retrieval. IEEE Trans Multimedia. 2019;21(6):1513–23. https://doi.org/10.1109/TMM.2018.2876833.
Forcén JI, Pagola M, Barrenechea E, Bustince H. Co-occurrence of deep convolutional features for image search. Image Vis Comput. 2020;97:103909. https://doi.org/10.1016/j.imavis.2020.103909.
Zhang B, Wang Q, Lu X, Wang F, Li P. Locality-constrained affine subspace coding for image classification and retrieval. Pattern Recogn. 2020;100:107167. https://doi.org/10.1016/j.patcog.2019.107167.
Bai C, Li H, Zhang J, Huang L, Zhang L. Unsupervised adversarial instance-level image retrieval. IEEE Trans Multimedia. 2021;23:2199–207. https://doi.org/10.1109/TMM.2021.3065578.
Comments (0)