Ha J, Kambe M, Pe J. Data mining: concepts and techniques. (2011), 1–703 https://doi.org/10.1016/C2009-0-61819-5.
Cai J, Luo J, Wang S, Yang S. Feature selection in machine learning: a new perspective. Neurocomputing. 2018;300:70–9. https://doi.org/10.1016/J.NEUCOM.2017.11.077.
Di Angelantonio E, Gao P, Pennells L, Kaptoge S, et al. Lipid-related markers and cardiovascular disease prediction. JAMA. 2012;307(23):2499–506. https://doi.org/10.1001/JAMA.2012.6571.
Tang J, Wang Y, Luo Y, Jianbo F, et al. Computational advances of tumor marker selection and sample classification in cancer proteomics. Comput Struct Biotechnol J. 2020;18:2012. https://doi.org/10.1016/j.csbj.2020.07.009.
Tang J, Wang Y, Jianbo Fu, Zhou Y, et al. A critical assessment of the feature selection methods used for biomarker discovery in current metaproteomics studies. Brief Bioinform. 2020;21(4):1378–90. https://doi.org/10.1093/BIB/BBZ061.
Santo K, Redfern J. Digital health innovations to improve cardiovascular disease care. Curr Atheroscler Rep. 2020;22:1–10. https://doi.org/10.1007/s11883-020-00889-x.
Zou Q, Kaiyang Qu, Luo Y, Yin D, et al. Predicting diabetes mellitus with machine learning techniques. Front Genet. 2018;9: 416440. https://doi.org/10.3389/FGENE.2018.00515/BIBTEX.
Feng Q, Chen L, Philip Chen CL. Optimize real-valued RBM with bidirectional autoencoder. iFUZZY 2015 - 2015 Int Conf Fuzzy Theory and Its App, Conference Digest. 2016;1:22–7. https://doi.org/10.1109/IFUZZY.2015.7391888.
Kim JK, Han YS, Lee JS. Particle swarm optimization–deep belief network–based rare class prediction model for highly class imbalance problem. Concurr Comput: Practice Exper. 2017;29(11):e4128. https://doi.org/10.1002/CPE.4128.
Houssein EH, Hammad A, Emam MM, Ali AA. An enhanced coati optimization algorithm for global optimization and feature selection in EEG emotion recognition. Comput Biol Med. 2024;173: 108329. https://doi.org/10.1016/J.COMPBIOMED.2024.108329.
Yaqoob A, Verma NK, Aziz RM, Saxena A. Enhancing feature selection through metaheuristic hybrid cuckoo search and Harris hawks optimization for cancer classification. Metaheuristics Machine Learning (2024) pp 95–134. https://doi.org/10.1002/9781394233953.CH4
Di Angelantonio E, Chowdhury R, Sarwar N, Ray KK, et al. B-type natriuretic peptides and cardiovascular risk: systematic review and meta-analysis of 40 prospective studies. Circulation. 2009;120(22):2177–87. https://doi.org/10.1161/CIRCULATIONAHA.109.884866.
Zeleznik R, Foldyna B, Eslami P, … Weiss J, Nature et al. Deep convolutional neural networks to predict cardiovascular risk from computed tomography. Nature. comR Zeleznik, B Foldyna, P Eslami, J Weiss, I Alexander, J Taron, C Parmar, RM Alvi, D Banerji Nature communications, 2021•nature.com, Accessed: Mar. 25, 2024. [Online]. Available: https://www.nature.com/articles/s41467-021-20966-2
Singh J, Kaur R. - Indian J Sci Technol, and undefined 2016, Cardio vascular disease classification ensemble optimization using genetic algorithm and neural network. sciresol.s3.us-east-2. Amazonaws J Singh, R Kaur Indian J Sci Technol, 2016•sciresol.s3.us-east-2. amazonaws …, https://doi.org/10.17485/ijst/2016/v9i(S1)/98900.
Stewart J, Manmathan G, Wilkinson P. Primary prevention of cardiovascular disease: a review of contemporary guidance and literature. JRSM Cardiovasc Dis. 2017;6:204800401668721. https://doi.org/10.1177/2048004016687211.
Lin X, Zhu F, Lam TH, Jiang CQ, et al. Egg consumption and the risk of cardiovascular disease and all-cause mortality: Guangzhou Biobank Cohort Study and meta-analyses. Eur J Nutr. 2019;58(2):785–96. https://doi.org/10.1007/S00394-018-1692-3/METRICS.
Bolón-Canedo V, Remeseiro B. Feature selection in image analysis: a survey. Artif Intell Rev. 2020;53(4):2905–31. https://doi.org/10.1007/S10462-019-09750-3/FIGURES/8.
Savalia S, Acosta E, Emamian V, Savalia S, et al. Classification of cardiovascular disease using feature extraction and artificial neural networks. J Biosci Med. 2017;5(11):64–79. https://doi.org/10.4236/JBM.2017.511008.
Kumar AS, Rekha R. Biomedical Signal Processing and Control, and undefined 2023. An improved hawk’s optimizer based learning algorithms for cardiovascular disease prediction. Elsevier AS Kumar, R Rekha Biomedical Signal Processing and Control, 2023•Elsevier, Accessed: Mar. 25, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1746809422008965
Thupakula S, Shankar S, Nimmala R, Ravula H, et al. Emerging biomarkers for the detection of cardiovascular diseases. Egypt Heart J. 2022;74:77. https://doi.org/10.1186/s43044-022-00317-2.
Lane ES, Azarmehr N, Jevsikov J, Howard JP, et al. Multibeat echocardiographic phase detection using deep neural networks. Comput Biol Med. 2021;133: 104373. https://doi.org/10.1016/J.COMPBIOMED.2021.104373.
Cardiovascular Disease dataset. https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset
Gopal S, Patro K, Sahu KK. Normalization: a pre-processing stage. IARJSET (2015); 20–22. https://doi.org/10.17148/iarjset.2015.2305.
Mukhametzyanov IZ. Normalization of multidimensional data for multi-criteria decision making problems: inversion, displacement, asymmetry. Springer Nature (2023); 348 https://doi.org/10.1007/978-981-15-1480-7_66
Carrara N, Ernst J. On the estimation of mutual information. Proceedings. 2020;33:31. https://doi.org/10.3390/PROCEEDINGS2019033031.
Fang L, Han Zhao Pu, Wang MY, et al. Feature selection method based on mutual information and class separability for dimension reduction in multidimensional time series for clinical data. Biomed Signal Process Control. 2015;21:82–9. https://doi.org/10.1016/j.bspc.2015.05.011.
Liu H, Sun J, Liu L, Zhang H. Feature selection with dynamic mutual information. Pattern Recogn. 2009;42(7):1330–9. https://doi.org/10.1016/J.PATCOG.2008.10.028.
Li F, Li H, Niu B, Chen J. Privacy computing: concept, computing framework, and future development trends. Engineering. 2019;5(6):1179–92. https://doi.org/10.1016/J.ENG.2019.09.002.
Savitha S, Rajiv Kannan A. A novel technique based on mutual information weighted feature selection to predict chronic kidney disease. J Intell Fuzzy Syst. 2023;45(1):491–504. https://doi.org/10.3233/JIFS-222401.
Zou Q, Zeng J, Cao L, Ji R. A novel features ranking metric with application to scalable visual and bioinformatics data classification. Neurocomputing. 2016;173:346–54. https://doi.org/10.1016/J.NEUCOM.2014.12.123.
Ho SW, Verdú S. On the interplay between conditional entropy and error probability. IEEE Trans Inf Theory. 2010;56(12):5930–42. https://doi.org/10.1109/TIT.2010.2080891.
Article MathSciNet MATH Google Scholar
Jahani MS, Aghamollaei G, Eftekhari M, Saberi-Movahed F. Unsupervised feature selection guided by orthogonal representation of feature space. Neurocomputing. 2023;516:61–76. https://doi.org/10.1016/J.NEUCOM.2022.10.030.
Jadhav S, He H, Jenkins K. Information gain directed genetic algorithm wrapper feature selection for credit rating. Appl Soft Comput. 2018;69:541–53. https://doi.org/10.1016/J.ASOC.2018.04.033.
Hinton G. Deep belief networks. Scholarpedia. 2009;4(5):5947. https://doi.org/10.4249/SCHOLARPEDIA.5947.
Deng Li, Dong Yu. Deep learning: methods and applications. Found Trends® Signal Processing. 2014;7(34):197–387. https://doi.org/10.1561/2000000039.
Article MathSciNet MATH Google Scholar
Mathews SM, Kambhamettu C, Barner KE. A novel application of deep learning for single-lead ECG classification. Comput Biol Med. 2018;99:53–62. https://doi.org/10.1016/J.COMPBIOMED.2018.05.013.
Tripathy BK, Maddikunta PKR, Pham QV, Gadekallu TR, et al. Harris Hawk optimization: a survey on variants and applications. Comput Intell Neurosci. 2022;2022:1. https://doi.org/10.1155/2022/2218594.
Heidari AA, Mirjalili S, Faris H, Aljarah I, et al. Harris hawk’s optimization: algorithm and applications. Future Gen Computer Syst. 2019;97:849–72. https://doi.org/10.1016/J.FUTURE.2019.02.028.
Fan Q, Chen Z, Xia Z. A novel quasi-reflected Harris hawk’s optimization algorithm for global optimization problems. Soft Comput. 2020;24(19):14825–43. https://doi.org/10.1007/S00500-020-04834-7/TABLES/12.
Long W, Jiao J, Liang X, Ming X, et al. A velocity-guided Harris hawk’s optimizer for function optimization and fault diagnosis of wind turbine. Artif Intell Rev. 2023;56(3):2563–605. https://doi.org/10.1007/S10462-022-10233-1/TABLES/2.
Comments (0)