An Asymmetric Semantic Segmentation Model via Lightweight Attention-Guided Feature Enhancement and Fusion

Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015; pp. 3431-3440.

Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. pp. 2881-2890.

Chen LC, Papandreou G, Kokkinos I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs. 2014. arXiv preprint arXiv:1412.7062.

Chen LC, Papandreou G, Kokkinos I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell. 2017;40(4):834–48.

Article  Google Scholar 

Chen LC, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation. 2017. arXiv:1706.05587.

Paszke A, Chaurasia A, Kim S, et al. Enet: a deep neural network architecture for real-time semantic segmentation. 2016. arXiv:1606.02147.

Romera Carmena E, Álvarez López JM, Bergasa Pascual LM, et al. ERFNet: efficient residual factorized ConvNet for real-time semantic segmentation. IEEE Trans Intell Transp Syst. 2017;19(1):263–72.

Article  Google Scholar 

Jiang W, Xie Z, Li Y. LRNNET: a light-weighted network with efficient reduced non-local operation for real-time semantic segmentation. In: IEEE international conference on multimedia and expo workshops. 2020. pp. 1–6.

Gao G. W, Xu G, Li JC, et al. FBSNet: a fast bilateral symmetrical network for real-time semantic segmentation. IEEE Trans Multimed. 2022.

Wu T, Tang S, Zhang R, et al. Cgnet: a light-weight context guided network for semantic segmentation. IEEE Trans Image Process. 2021;30:1169–79.

Article  MATH  Google Scholar 

Hao SJ, Zhou Y, Guo YR, et al. Real-time semantic segmentation via spatial-detail guided context propagation. IEEE Trans Neural Netw Learn Syst. 2022. https://doi.org/10.1109/TNNLS.2022.3154443.

Article  MATH  Google Scholar 

Wang Y, Zhou Q, Liu J. Lednet: a lightweight encoder-decoder network for real-time semantic segmentation. In: Proceedings-international conference on image processing. 2019. pp. 1860–1864.

Gao G, Xu G, Yu Y, Xie J, Yang J, Yue D. MSCFNet: a lightweight network with multi-scale context fusion for real-time semantic segmentation. IEEE Trans Intell Transp Syst. 2022;23(12):25489–99.

Article  Google Scholar 

Yu C, Xiao B, Gao C, Yuan L, et al. Lite-HRNet: a lightweight high-resolution network, In: IEEE/CVF conference on computer vision and pattern recognition (CVPR). 2021. pp. 10435-10445.

Yu C, Wang J, Peng C, et al. Bisenet: bilateral segmentation network for real-time semantic segmentation. In: Proceedings of the European conference on computer vision(ECCV). 2018. pp. 325-341.

Li H, Xiong P, Fan H, Sun J. DFANet: deep feature aggregation for real-time semantic segmentation, In: IEEE/CVF conference on computer vision and pattern recognition. 2019. pp. 9522–9531.

Si H, Zhang Z, Lu F. Real-time semantic segmentation via multiply spatial fusion network. In: 31st British machine vision conference. 2020. pp. 7-10.

Fan M, Lai S, Huang J, Wei X, Chai Z, Luo J. Rethinking bisenet for real-time semantic segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021. pp. 9716–9725.

Li x, You A, Zhu A, Zhao H, Yang M, Yang K, Tan S, Tong Y. Semantic flow for fast and accurate scene parsing. In: European conference on computer vision. 2020. pp. 775–793.

Liu B, Cai H, Yang S, Li H, Wang Y, Chen X. Lightweight semantic segmentation network for autonomous driving scenarios. J Xidian Univ (Chin). 2023;50(1):118–28.

MATH  Google Scholar 

Lu M, Chen Z, Liu C, Ma S, Cai L, Qin H. MFNet: multi-feature fusion network for real-time semantic segmentation in road scenes. IEEE Trans Intell Transp Syst. 2022;23(1):20991–1003.

Article  Google Scholar 

Elhassan M. A, Yang C, Huang C, Munea TL. Spfnet: subspace pyramid fusion network for semantic segmentation, 2022. arXiv:2204.01278.

Hu J, Shen L, Sun G. Squeeze-and-excitation networks. In: IEEE/CVF conference on computer vision and pattern recognition. 2018. pp. 7132-7141.

Wang Q, Wu B, Zhu P, Li P, Zuo W, Hu Q. ECA-Net: efficient channel attention for deep convolutional neural networks. In: IEEE/CVF conference on computer vision and pattern recognition (CVPR). 2020. pp. 11531-11539.

Mo X, Chen X. Real time global attention network for semantic segmentation. IEEE Robot Autom Lett. 2022;7(2):1574–80.

Article  MATH  Google Scholar 

Song Q, Mei K, Huang R. AttaNet: attention-augmented network for fast and accurate scene parsing. In: Proc AAAI conf Artif Intell. 2021;35(3):2567-2575.

Li J, Zha S, Chen C, Ding M, Zhang T, Yu H. Attention guided global enhancement and local refinement network for semantic segmentation. In: IEEE Trans Image Process. 2022;31:3211-3223.

Huang L, Yuan, Y, Guo, J, Zhang, C, Chen, X, Wang, J. Interlaced sparse self-attention for semantic segmentation, 2019. arXiv:1907.12273.

Nikita K, Łukasz K, Anselm L. Reformer: the efficient transformer. 2020. arXiv:2001.04451.

Badrinarayanan V, Kendall A, Cipolla R. Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–95.

Article  MATH  Google Scholar 

Mehta S, Rastegari M, Caspi A, et al. ESPNet: efficient spatial pyramid of dilated convolutions for semantic segmentation. In: proceedings of the European conference on computer vision. 2018. pp. 561-580.

Lo SY, Hang H. M, Chan SW, et al. Efficient dense modules of asymmetric convolution for real-time semantic segmentation. In: proceedings of the ACM multimedia Asia. 2019. pp. 1-6.

Li G, Yun I, Kim J, et al. Dabnet: depth-wise asymmetric bottleneck for real-time semantic segmentation. arXiv preprint 2019. arXiv:1907.11357.

Zhao H, Qi X, Shen X, et al. ICNet for real-time semantic segmentation on high resolution images. In: Lect Notes Comput Sci. 2018;11207:418–434.

Zhuang M, Zhong X, Gu D, Feng L, Zhong X, Hu H. LRDNet: a lightweight and efficient network with refined dual attention decorder for real-time semantic segmentation. Neurocomput. 2021;459:349–60.

Article  MATH  Google Scholar 

Xu G, Li J, Gao G, Lu H, Yang J, Yue D. Lightweight real-time semantic segmentation network with efficient transformer and CNN. IEEE Trans Intell Transp Syst. 2023;24(12):15897–906.

Article  Google Scholar 

Cheng J, Peng X, Tang X, Tu W, Xu W. MIFNet: a lightweight multiscale information fusion network. Int J Intell Syst. 2022;37(9):5617–42.

Article  MATH  Google Scholar 

Zhu Z, Wu W, Wang H, Li H, He Y, Liu Y, Lu Q. Zhan X LDANet: the laplace-guided detail-constrained asymmetric network for real-time semantic segmentation. Multimed Tools Appl. 2024;83(18):55659–81.

Article  Google Scholar 

Hu X, Ke Y. EMFANet: a lightweight network with efficient multi-scale feature aggregation for real-time semantic segmentation. J Real-Time Image Proc. 2024;21(2):40.

Article  MATH  Google Scholar 

Hu X, Zhou B. LBARNet: lightweight bilateral asymmetric residual network for real-time semantic segmentation. Comput Graph. 2023;116:1–12.

Article  MATH  Google Scholar 

Hu X, Xu S, Jing L. Lightweight attention-guided redundancy-reuse network for real-time semantic segmentation. IET Image Process. 2023;17(9):2649–58.

Article  MATH  Google Scholar 

Hu X, Feng J, Gong J. LFFNet: lightweight feature-enhanced fusion network for real-time semantic segmentation of road scenes. Pattern Anal Applic. 2024;27(1):27.

Article  MATH  Google Scholar 

Rashid KI, Yang C, Huang C. Fast-DSAGCN: enhancing semantic segmentation with multifaceted attention mechanisms. Neurocomput. 2024;587.

Yin H, Xie W, Zhang J, Zhang Y, Zhu W, Gao J, Shao Y, Li Y. Dual context network for real-time semantic segmentation. Mach Vis Appl. 2023;34(2):22.

Article  MATH  Google Scholar 

Tan S, Yang W, Lin J, Yu W. Feature extraction and enhancement for real-time semantic segmentation. Concurr Comput Pract Experience. 2023;35(17).

Yi Q, Dai G, Shi M, Huang Z, Luo A. Elanet: effective lightweight attention-guided network for real-time semantic segmentation. Neural Process Lett. 2023;55(5):6425–42.

Article  MATH  Google Scholar 

Treml M, Arjona-Medina J, Unterthiner T, Durgesh R, Friedmann F, Schuberth P, et al. Speeding up semantic segmentation for autonomous driving, In: NeurIPS workshop. 2016

Mehta S, Rastegari M, Shapiro L, Hajishirzi H. Espnetv2: a light-weight, power efficient, and general purpose convolutional neural network. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019. pp. 9190-9200

Hao SJ, Zhou Y, Guo Y. R, et al. Bi-direction context propagation network for real-time semantic segmentation, 2020. arXiv: 11034.

Singha T, Pham DS, Krishna A. improved short-term dense bottleneck network for efficient scene analysis. Comp Vision Image Underst. 2023;235.

Jiang R, Chen R, Zhang L, Wang X, Xu Y. AM-MulFSNet: a fast semantic segmentation network combining attention mechanism and multi-branch. IET Image Process. 2024;18(7):1733–44.

Article  MATH  Google Scholar 

Wang P, Li L, Pan F, Wang L. Lightweight bilateral network for real-time semantic segmentation. J Adv Comput Intell Intell Inf. 2023;27(4):673–82.

Article  MATH  Google Scholar 

Dong Y, Zhao K, Zheng L, Yang H, Liu Q, Pei Y. Refinement co-supervision network for real-time semantic segmentation. IET Comput Vis. 2023;17(6):652–62.

Article  MATH  Google Scholar 

Yu C, Gao C, Wang J, Yu G, Shen C, Sang N. Bisenet v2: bilateral network with guided aggregation for real-time semantic segmentation. Int J Comput Vis. 2021;129:3051–68.

Article  MATH  Google Scholar 

Pan H, Hong Y, Sun W, Jia Y. Deep dual-resolution networks for real-time and accurate semantic segmentation of traffic scenes. IEEE Trans Intell Transp Syst. 2022;24(3):3448–60.

Article  MATH  Google Scholar 

Comments (0)

No login
gif