Kornauth, C. et al. Functional precision medicine provides clinical benefit in advanced aggressive hematologic cancers and identifies exceptional responders. Cancer Discov. 12, 372–387 (2022).
Malani, D. et al. Implementing a functional precision medicine tumor board for acute myeloid leukemia. Cancer Discov. 12, 388–401 (2022).
Article CAS PubMed Google Scholar
Letai, A., Bhola, P. & Welm, A. L. Functional precision oncology: testing tumors with drugs to identify vulnerabilities and novel combinations. Cancer Cell 40, 26–35 (2022).
Article CAS PubMed Google Scholar
Tognon, C. E., Sears, R. C., Mills, G. B., Gray, J. W. & Tyner, J. W. Ex vivo analysis of primary tumor specimens for evaluation of cancer therapeutics. Annu. Rev. Cancer Biol. 5, 39–57 (2021).
Flobak, Å., Skånland, S. S., Hovig, E., Taskén, K. & Russnes, H. G. Functional precision cancer medicine: drug sensitivity screening enabled by cell culture models. Trends Pharmacol. Sci. 43, 973–985 (2022).
Article CAS PubMed Google Scholar
Pemovska, T. et al. Axitinib effectively inhibits BCR-ABL1(T315I) with a distinct binding conformation. Nature 519, 102–105 (2015).
Article CAS PubMed Google Scholar
Hatzis, C. et al. Enhancing reproducibility in cancer drug screening: how do we move forward? Cancer Res. 74, 4016–4023 (2014).
Article CAS PubMed PubMed Central Google Scholar
Haibe-Kains, B. et al. Inconsistency in large pharmacogenomic studies. Nature 504, 389–393 (2013).
Article CAS PubMed PubMed Central Google Scholar
Yadav, B. et al. Quantitative scoring of differential drug sensitivity for individually optimized anticancer therapies. Sci. Rep. 4, 5193 (2014).
Article CAS PubMed PubMed Central Google Scholar
Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).
Article CAS PubMed PubMed Central Google Scholar
Garnett, M. J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570–575 (2012).
Article CAS PubMed PubMed Central Google Scholar
Mpindi, J. P. et al. Consistency in drug response profiling. Nature 540, E5–E6 (2016).
Article CAS PubMed Google Scholar
Pemovska, T. et al. Individualized systems medicine strategy to tailor treatments for patients with chemorefractory acute myeloid leukemia. Cancer Discov. 3, 1416–1429 (2013).
Article CAS PubMed Google Scholar
Yin, Y. et al. Functional testing to characterize and stratify PI3K inhibitor responses in chronic lymphocytic leukemia. Clin. Cancer Res. 28, 4444–4455 (2022).
Article CAS PubMed PubMed Central Google Scholar
Andersen, A. N. et al. Clinical forecasting using ex vivo drug sensitivity profiling of acute myeloid leukemia. Preprint at https://www.biorxiv.org/content/10.1101/2022.10.11.509866v2 (2023).
Bottomly, D. et al. Integrative analysis of drug response and clinical outcome in acute myeloid leukemia. Cancer Cell 40, 850–864.e9 (2022).
Article CAS PubMed PubMed Central Google Scholar
Potdar, S. et al. Breeze 2.0: an interactive web-tool for visual analysis and comparison of drug response data. Nucleic Acids Res. 51, W57–W61 (2023).
Article PubMed PubMed Central Google Scholar
Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012).
Article CAS PubMed PubMed Central Google Scholar
Yamada, S. et al. Clinical relevance of in vitro chemoresistance in childhood acute myeloid leukemia. Leukemia 15, 1892–1897 (2001).
Article CAS PubMed Google Scholar
Volm, M. & Efferth, T. Prediction of cancer drug resistance and implications for personalized medicine. Front. Oncol. 5, 282 (2015).
Article PubMed PubMed Central Google Scholar
Gupta, A., Gautam, P., Wennerberg, K. & Aittokallio, T. A normalized drug response metric improves accuracy and consistency of anticancer drug sensitivity quantification in cell-based screening. Commun. Biol. 3, 42 (2020).
Article PubMed PubMed Central Google Scholar
Hafner, M., Niepel, M., Chung, M. & Sorger, P. K. Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs. Nat. Methods 13, 521–527 (2016).
Article CAS PubMed PubMed Central Google Scholar
Murumagi, A. et al. Drug response profiles in patient-derived cancer cells across histological subtypes of ovarian cancer: real-time therapy tailoring for a patient with low-grade serous carcinoma. Br. J. Cancer 128, 678–690 (2023).
Article CAS PubMed Google Scholar
Heinemann, T. et al. Deep morphology learning enhances ex vivo drug profiling-based precision medicine. Blood Cancer Discov. 3, 502–515 (2022).
Article PubMed PubMed Central Google Scholar
Kropivsek, K. et al. Ex vivo drug response heterogeneity reveals personalized therapeutic strategies for patients with multiple myeloma. Nat. Cancer 4, 734–753 (2023).
Article CAS PubMed PubMed Central Google Scholar
Kuusanmäki, H. et al. Phenotype-based drug screening reveals association between venetoclax response and differentiation stage in acute myeloid leukemia. Haematologica 105, 708–720 (2020).
Article PubMed PubMed Central Google Scholar
Ianevski, A. et al. Patient-tailored design for selective co-inhibition of leukemic cell subpopulations. Sci. Adv. 7, eabe4038 (2021).
Article CAS PubMed PubMed Central Google Scholar
Goh, J. et al. An ex vivo platform to guide drug combination treatment in relapsed/refractory lymphoma. Sci. Transl. Med. 14, eabn7824 (2022).
Article CAS PubMed Google Scholar
He, L. et al. Patient-customized drug combination prediction and testing for T-cell prolymphocytic leukemia patients. Cancer Res. 78, 2407–2418 (2018).
Article CAS PubMed Google Scholar
He, L. et al. Network-guided identification of cancer-selective combinatorial therapies in ovarian cancer. Brief. Bioinform. 22, bbab272 (2021).
Article PubMed PubMed Central Google Scholar
Hanes, R. et al. screenwerk: a modular tool for the design and analysis of drug combination screens. Bioinformatics 39, btac840 (2023).
Article CAS PubMed Google Scholar
Ritz, C., Baty, F., Streibig, J. C. & Gerhard, D. Dose-response analysis using R. PLoS One 10, e0146021 (2015).
Article PubMed PubMed Central Google Scholar
Tipping, M. E. & Bishop, C. M. Probabilistic principal component analysis. J. R. Stat. Soc. Ser. B Stat. Methodol. 61, 611–622 (1999).
Lee, S. H. R. et al. Pharmacotypes across the genomic landscape of pediatric acute lymphoblastic leukemia and impact on treatment response. Nat. Med. 29, 170–179 (2023).
Article CAS PubMed PubMed Central Google Scholar
Kuusanmäki, H. et al. Ex vivo venetoclax sensitivity testing predicts treatment response in acute myeloid leukemia. Haematologica 108, 1768–1781 (2023).
Majumder, M. M. et al. Identification of precision treatment strategies for relapsed/refractory multiple myeloma by functional drug sensitivity testing. Oncotarget 8, 56338–56350 (2017).
Article PubMed PubMed Central Google Scholar
Pearson, K. LIII. On lines and planes of closest fit to systems of points in space. The Lond., Edinb. Dublin Philos. Mag. J. Sci. 2, 559–572 (1901).
Comments (0)