Allison DF, Wang GG (2019) R-loops: formation, function, and relevance to cell stress. Cell Stress 3(2):38–46. https://doi.org/10.15698/cst2019.02.175
Andrews AM, McCartney HJ, Errington TM, D’Andrea AD, Macara IG (2018) A senataxin-associated exonuclease SAN1 is required for resistance to DNA interstrand cross-links. Nat Commun 9(1):2592. https://doi.org/10.1038/s41467-018-05008-8
Article CAS PubMed PubMed Central Google Scholar
Asadi MR, Sadat Moslehian M, Sabaie H, Jalaiei A, Ghafouri-Fard S, Taheri M, Rezazadeh M (2021) Stress granules and neurodegenerative disorders: a scoping review. Front Aging Neurosci 13:650740. https://doi.org/10.3389/fnagi.2021.650740
Article CAS PubMed PubMed Central Google Scholar
Becherel OJ, Yeo AJ, Stellati A, Heng EY, Luff J, Suraweera AM, Woods R, Fleming J, Carrie D, McKinney K, Xu X, Deng C, Lavin MF (2013) Senataxin plays an essential role with DNA damage response proteins in meiotic recombination and gene silencing. PLoS Genet 9(4):e1003435. https://doi.org/10.1371/journal.pgen.1003435
Article CAS PubMed PubMed Central Google Scholar
Bennett CL, Chen Y, Vignali M, Lo RS, Mason AG, Unal A, Huq Saifee NP, Fields S, La Spada AR (2013) Protein interaction analysis of senataxin and the ALS4 L389S mutant yields insights into senataxin post-translational modification and uncovers mutant-specific binding with a brain cytoplasmic RNA-encoded peptide. PLoS ONE 8(11):e78837. https://doi.org/10.1371/journal.pone.0078837
Article CAS PubMed PubMed Central Google Scholar
Bennett CL, Dastidar SG, Ling SC, Malik B, Ashe T, Wadhwa M, Miller DB, Lee C, Mitchell MB, van Es MA, Grunseich C, Chen Y, Sopher BL, Greensmith L, Cleveland DW, La Spada AR (2018) Senataxin mutations elicit motor neuron degeneration phenotypes and yield TDP-43 mislocalization in ALS4 mice and human patients. Acta Neuropathol 136(3):425–443. https://doi.org/10.1007/s00401-018-1852-9
Article CAS PubMed PubMed Central Google Scholar
Bennett CL, La Spada AR (2015) Unwinding the role of senataxin in neurodegeneration. Discov Med 19(103):127–136
Bennett CL, La Spada AR (2018) Senataxin, a novel helicase at the interface of RNA transcriptome regulation and neurobiology: from normal function to pathological roles in motor neuron disease and cerebellar degeneration. Adv Neurobiol 20:265–281. https://doi.org/10.1007/978-3-319-89689-2_10
Bennett CL, La Spada AR (2021) SUMOylated senataxin functions in genome stability, RNA degradation, and stress granule disassembly, and is linked with inherited ataxia and motor neuron disease. Mol Gen Genomic Med 9(12):e1745. https://doi.org/10.1002/mgg3.1745
Bunton-Stasyshyn RK, Saccon RA, Fratta P, Fisher EM (2015) SOD1 function and its implications for amyotrophic lateral sclerosis pathology: new and renascent themes. Neuroscientist 21(5):519–529. https://doi.org/10.1177/1073858414561795
Article CAS PubMed Google Scholar
Casey AE, Liu W, Hein LK, Sargeant TJ, Pederson SM, Mäkinen VP (2022) Transcriptional targets of senataxin and E2 promoter binding factors are associated with neuro-degenerative pathways during increased autophagic flux. Sci Rep 12(1):17665. https://doi.org/10.1038/s41598-022-21617-2
Article CAS PubMed PubMed Central Google Scholar
Chen X, Müller U, Sundling KE, Brow DA (2014) Saccharomyces cerevisiae Sen1 as a model for the study of mutations in human senataxin that elicit cerebellar ataxia. Genet 198(2):577–590. https://doi.org/10.1534/genetics.114.167585
Chen YC, Backus KM, Merkulova M, Yang C, Brown D, Cravatt BF, Zhang C (2017) Covalent modulators of the vacuolar ATPase. J Am Chem Soc 139(2):639–642. https://doi.org/10.1021/jacs.6b12511
Article CAS PubMed Google Scholar
Chen YZ, Bennett CL, Huynh HM, Blair IP, Puls I, Irobi J, Dierick I, Abel A, Kennerson ML, Rabin BA, Nicholson GA, Auer-Grumbach M, Wagner K, De Jonghe P, Griffin JW, Fischbeck KH, Timmerman V, Cornblath DR, Chance PF (2004) DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). American J Hum Genet 74(6):1128–1135. https://doi.org/10.1086/421054
Cohen S, Puget N, Lin YL, Clouaire T, Aguirrebengoa M, Rocher V, Pasero P, Canitrot Y, Legube G (2018) Senataxin resolves RNA:DNA hybrids forming at DNA double-strand breaks to prevent translocations. Nat Commun 9(1):533. https://doi.org/10.1038/s41467-018-02894-w
Article CAS PubMed PubMed Central Google Scholar
Connolly O, Le Gall L, McCluskey G, Donaghy CG, Duddy WJ, Duguez S (2020) A systematic review of genotype-phenotype correlation across cohorts having causal mutations of different genes in ALS. J Pers Med 10(3):58. https://doi.org/10.3390/jpm10030058
Article PubMed PubMed Central Google Scholar
Coyne AN, Zaepfel BL, Zarnescu DC (2017) Failure to deliver and translate-new insights into RNA dysregulation in ALS. Front Cell Neurosci 11:243. https://doi.org/10.3389/fncel.2017.00243
Article CAS PubMed PubMed Central Google Scholar
Fang MY, Markmiller S, Vu AQ, Javaherian A, Dowdle WE, Jolivet P, Bushway PJ, Castello NA, Baral A, Chan MY, Linsley JW, Linsley D, Mercola M, Finkbeiner S, Lecuyer E, Lewcock JW, Yeo GW (2019) Small-molecule modulation of TDP-43 recruitment to stress granules prevents persistent TDP-43 accumulation in ALS/FTD. Neuron 103(5):802-819.e11. https://doi.org/10.1016/j.neuron.2019.05.048
Article CAS PubMed PubMed Central Google Scholar
Gatti V, De Domenico S, Melino G, Peschiaroli A (2023) Senataxin and R-loops homeostasis: multifaced implications in carcinogenesis. Cell Death Discov 9(1):145. https://doi.org/10.1038/s41420-023-01441-x
Article CAS PubMed PubMed Central Google Scholar
Grunseich C, Wang IX, Watts JA, Burdick JT, Guber RD, Zhu Z, Bruzel A, Lanman T, Chen K, Schindler AB, Edwards N, Ray-Chaudhury A, Yao J, Lehky T, Piszczek G, Crain B, Fischbeck KH, Cheung VG (2018) Senataxin mutation reveals how R-loops promote transcription by blocking DNA methylation at gene promoters. Mol Cell 69(3):426-437.e7. https://doi.org/10.1016/j.molcel.2017.12.030
Article CAS PubMed PubMed Central Google Scholar
Hasanova Z, Klapstova V, Porrua O, Stefl R, Sebesta M (2023) Human senataxin is a bona fide R-loop resolving enzyme and transcription termination factor. Nucleic Acids Res 51(6):2818–2837. https://doi.org/10.1093/nar/gkad092
Article PubMed PubMed Central Google Scholar
Jo M, Lee S, Jeon YM, Kim S, Kwon Y, Kim HJ (2020) The role of TDP-43 propagation in neurodegenerative diseases: integrating insights from clinical and experimental studies. Exp Mol Med 52(10):1652–1662. https://doi.org/10.1038/s12276-020-00513-7
Article CAS PubMed PubMed Central Google Scholar
Kamelgarn M, Chen J, Kuang L, Jin H, Kasarskis EJ, Zhu H (2018) ALS mutations of FUS suppress protein translation and disrupt the regulation of nonsense-mediated decay. Proc Natl Acad Sci U S A 115(51):E11904–E11913. https://doi.org/10.1073/pnas.1810413115
Article CAS PubMed PubMed Central Google Scholar
Kenna KP, McLaughlin RL, Byrne S, Elamin M, Heverin M, Kenny EM, Cormican P, Morris DW, Donaghy CG, Bradley DG, Hardiman O (2013) Delineating the genetic heterogeneity of ALS using targeted high-throughput sequencing. J Med Genet 50(11):776–783. https://doi.org/10.1136/jmedgenet-2013-101795
Article CAS PubMed Google Scholar
Kremers CJP (2022) Characterising a novel mouse model of amyotrophic lateral sclerosis: a study of senataxin pathology in ALS4. Dissertation, University College London
Laverde EE, Lai Y, Leng F, Balakrishnan L, Freudenreich CH, Liu Y (2020) R-loops promote trinucleotide repeat deletion through DNA base excision repair enzymatic activities. J Biol Chem 295(40):13902–13913. https://doi.org/10.1074/jbc.RA120.014161
Article CAS PubMed PubMed Central Google Scholar
Laverde EE, Polyzos AA, Tsegay PP, Shaver M, Hutcheson JD, Balakrishnan L, McMurray CT, Liu Y (2022) Flap endonuclease 1 endonucleolytically processes RNA to resolve R-Loops through DNA base excision repair. Genes 14(1):98. https://doi.org/10.3390/genes14010098
Article CAS PubMed PubMed Central Google Scholar
Lee J, Hyeon SJ, Im H, Ryu H, Kim Y, Ryu H (2016) Astrocytes and microglia as non-cell autonomous players in the pathogenesis of ALS. Exp Neurobiol 25(5):233–240. https://doi.org/10.5607/en.2016.25.5.233
Article PubMed PubMed Central Google Scholar
Leonaitė B, Han Z, Basquin J, Bonneau F, Libri D, Porrua O, Conti E (2017) Sen1 has unique structural features grafted on the architecture of the Upf1-like helicase family. EMBO J 36(11):1590–1604. https://doi.org/10.15252/embj.201696174
Li W, Li S (2017) Facilitators and repressors of transcription-coupled DNA repair in Saccharomyces cerevisiae. Photochem Photobiol 93(1):259–267. https://doi.org/10.1111/php.12655
Article CAS PubMed Google Scholar
Li W, Selvam K, Rahman SA, Li S (2016) Sen1, the yeast homolog of human senataxin, plays a more direct role than Rad26 in transcription coupled DNA repair. Nucleic aAids Res 44(14):6794–6802. https://doi.org/10.1093/nar/gkw428
Mackenzie IR, Rademakers R, Neumann M (2010) TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 9(10):995–1007. https://doi.org/10.1016/S1474-4422(10)70195-2
Article CAS PubMed Google Scholar
Masrori P, Van Damme P (2020) Amyotrophic lateral sclerosis: a clinical review. Eur J Neurol 27(10):1918–1929. https://doi.org/10.1111/ene.14393
Comments (0)