Khan, F., Al-Ahmed, A., & Al-Sulaiman, F. A. (2021). Critical analysis of the limitations and validity of the assumptions with the analytical methods commonly used to determine the photovoltaic cell parameters. Renewable and Sustainable Energy Reviews, 140, 110753. https://doi.org/10.1016/j.rser.2021.110753
Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24, 38–50. https://doi.org/10.1016/j.esr.2019.01.006
Solar Energy Technologies Office. (2023, January 26). Solar Photovoltaic Cell Basics [US Gov website]. Office of Energy Efficiency & Renewable Energy. https://www.energy.gov/eere/solar/solar-photovoltaic-cell-basics#:~:text=Silicon,of%20the%20modules%20sold%20today.
Shockley, W., & Queisser, H. J. (1961). Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. Journal of Applied Physics, 32(3), 510–519. https://doi.org/10.1063/1.1736034
Richter, A., Hermle, M., & Glunz, S. W. (2013). Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells. IEEE Journal of Photovoltaics, 3(4), 1184–1191. https://doi.org/10.1109/JPHOTOV.2013.2270351
National Renewable Energy Laboratory. (2023, October). Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html
Leijtens, T., Bush, K. A., Prasanna, R., & McGehee, M. D. (2018). Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nature Energy, 3(10), 828–838. https://doi.org/10.1038/s41560-018-0190-4
Futscher, M. H., & Ehrler, B. (2016). Efficiency Limit of Perovskite/Si Tandem Solar Cells. ACS Energy Letters, 1(4), 863–868. https://doi.org/10.1021/acsenergylett.6b00405
Li, X., Xu, Q., Yan, L., Ren, C., Shi, B., Wang, P., Mazumdar, S., Hou, G., Zhao, Y., & Zhang, X. (2021). Silicon heterojunction-based tandem solar cells: Past, status, and future prospects. Nanophotonics, 10(8), 2001–2022. https://doi.org/10.1515/nanoph-2021-0034
Li, H., & Zhang, W. (2020). Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment. Chemical Reviews, 120, 9835.
Article CAS PubMed Google Scholar
Brinkmann, K. O., Becker, T., Zimmermann, F., Kreusel, C., Gahlmann, T., Theisen, M., Haeger, T., Olthof, S., Tückmantel, C., Günster, M., Maschwitz, T., Göbelsmann, F., Koch, C., Hertel, D., Caprioglio, P., Peña-Camargo, F., Perdigón-Toro, L., Al-Ashouri, A., Merten, L., & Riedl, T. (2022). Perovskite–organic tandem solar cells with indium oxide interconnect. Nature, 604(7905), 280–286. https://doi.org/10.1038/s41586-022-04455-0
Article CAS PubMed Google Scholar
Brakkee, R., & Williams, R. M. (2020). Minimizing Defect States in Lead Halide Perovskite Solar Cell Materials. Applied Sciences, 10(9), 3061. https://doi.org/10.3390/app10093061
Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131(17), 6050–6051. https://doi.org/10.1021/ja809598r
Article CAS PubMed Google Scholar
Kim, J. Y., Lee, J.-W., Jung, H. S., Shin, H., & Park, N.-G. (2020). High-Efficiency Perovskite Solar Cells. Chemical Reviews, 120(15), 7867–7918. https://doi.org/10.1021/acs.chemrev.0c00107
Article CAS PubMed Google Scholar
Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry-Baker, R., Yum, J.-H., Moser, J. E., Grätzel, M., & Park, N.-G. (2012). Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports, 2(1), 591. https://doi.org/10.1038/srep00591
Article CAS PubMed PubMed Central Google Scholar
Xiao, Z., Dong, Q., Bi, C., Shao, Y., Yuan, Y., & Huang, J. (2014). Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement. Advanced Materials, 26(37), 6503–6509. https://doi.org/10.1002/adma.201401685
Article CAS PubMed Google Scholar
Bi, C., Wang, Q., Shao, Y., Yuan, Y., Xiao, Z., & Huang, J. (2015). Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nature Communications, 6(1), 7747. https://doi.org/10.1038/ncomms8747
Article CAS PubMed Google Scholar
Jeng, J.-Y., Chen, K.-C., Chiang, T.-Y., Lin, P.-Y., Tsai, T.-D., Chang, Y.-C., Guo, T.-F., Chen, P., Wen, T.-C., & Hsu, Y.-J. (2014). Nickel Oxide Electrode Interlayer in CH 3 NH 3 PbI 3 Perovskite/PCBM Planar-Heterojunction Hybrid Solar Cells. Advanced Materials, 26(24), 4107–4113. https://doi.org/10.1002/adma.201306217
Article CAS PubMed Google Scholar
Ossila. (2023, March 1). Perovskites and Perovskite Solar Cells: An Introduction. Ossila.Com. https://www.ossila.com/en-eu/pages/perovskites-and-perovskite-solar-cells-an-introduction
Guillemoles, J.-F., Kirchartz, T., Cahen, D., & Rau, U. (2019). Guide for the perplexed to the Shockley-Queisser model for solar cells. Nature Photonics, 13(8), 501–505. https://doi.org/10.1038/s41566-019-0479-2
Williams, R. M. (Director). (2020). The Shockley-Queisser Limit: Theoretical limits of solar cells and how to surpass them. https://youtu.be/KsP90hT41t4
Vos, A. D. (1980). Detailed balance limit of the efficiency of tandem solar cells. Journal of Physics D: Applied Physics, 13(5), 839–846. https://doi.org/10.1088/0022-3727/13/5/018
Ho-Baillie, A. W. Y., Zheng, J., Mahmud, M. A., Ma, F.-J., McKenzie, D. R., & Green, M. A. (2021). Recent progress and future prospects of perovskite tandem solar cells. Applied Physics Reviews, 8(4), 041307. https://doi.org/10.1063/5.0061483
Tockhorn, P., Wagner, P., Kegelmann, L., Stang, J.-C., Mews, M., Albrecht, S., & Korte, L. (2020). Three-Terminal Perovskite/Silicon Tandem Solar Cells with Top and Interdigitated Rear Contacts. ACS Applied Energy Materials, 3(2), 1381–1392. https://doi.org/10.1021/acsaem.9b01800
Rienäcker, M., Warren, E. L., Schnabel, M., Schulte-Huxel, H., Niepelt, R., Brendel, R., Stradins, P., Tamboli, A. C., & Peibst, R. (2019). Back-contacted bottom cells with three terminals: Maximizing power extraction from current-mismatched tandem cells. Progress in Photovoltaics: Research and Applications, 27(5), 410–423. https://doi.org/10.1002/pip.3107
Schuster, O., Wientjes, P., Shrestha, S., Levchuk, I., Sytnyk, M., Matt, G. J., Osvet, A., Batentschuk, M., Heiss, W., Brabec, C. J., Fauster, T., & Niesner, D. (2020). Looking beyond the Surface: The Band Gap of Bulk Methylammonium Lead Iodide. Nano Letters, 20(5), 3090–3097. https://doi.org/10.1021/acs.nanolett.9b05068
Article CAS PubMed Google Scholar
Zhu, H., Pan, L., Eickemeyer, F. T., Hope, M. A., Ouellette, O., Alanazi, A. Q. M., Gao, J., Baumeler, T. P., Li, X., Wang, S., Zakeeruddin, S. M., Liu, Y., Emsley, L., & Grätzel, M. (2022). Efficient and Stable Large Bandgap MAPbBr 3 Perovskite Solar Cell Attaining an Open Circuit Voltage of 1.65 V. ACS Energy Letters, 7(3), 1112–1119. https://doi.org/10.1021/acsenergylett.1c02431
Cheacharoen, R., Boyd, C. C., Burkhard, G. F., Leijtens, T., Raiford, J. A., Bush, K. A., Bent, S. F., & McGehee, M. D. (2018). Encapsulating perovskite solar cells to withstand damp heat and thermal cycling. Sustainable Energy & Fuels, 2(11), 2398–2406. https://doi.org/10.1039/C8SE00250A
Martins, J., Emami, S., Madureira, R., Mendes, J., Ivanou, D., & Mendes, A. (2020). Novel laser-assisted glass frit encapsulation for long-lifetime perovskite solar cells. Journal of Materials Chemistry A, 8(38), 20037–20046. https://doi.org/10.1039/D0TA05583B
Xu, T., Chen, Y., & Chen, Q. (2023). Improving intrinsic stability for perovskite/silicon tandem solar cells. Science China Physics, Mechanics & Astronomy, 66(1), 217305. https://doi.org/10.1007/s11433-022-1959-4
Hoke, E. T., Slotcavage, D. J., Dohner, E. R., Bowring, A. R., Karunadasa, H. I., & McGehee, M. D. (2015). Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chemical Science, 6(1), 613–617. https://doi.org/10.1039/C4SC03141E
Article CAS PubMed Google Scholar
Fu, F., Li, J., Yang, T. C., Liang, H., Faes, A., Jeangros, Q., Ballif, C., & Hou, Y. (2022). Monolithic Perovskite-Silicon Tandem Solar Cells: From the Lab to Fab? Advanced Materials, 34(24), 2106540. https://doi.org/10.1002/adma.202106540
Shi, L., Bucknall, M. P., Young, T. L., Zhang, M., Hu, L., Bing, J., Lee, D. S., Kim, J., Wu, T., Takamure, N., McKenzie, D. R., Huang, S., Green, M. A., & Ho-Baillie, A. W. Y. (2020). Gas chromatography–mass spectrometry analyses of encapsulated stable perovskite solar cells. Science, 368(6497), eaba2412. https://doi.org/10.1126/science.aba2412
Article CAS PubMed Google Scholar
Essig, S., Allebé, C., Remo, T., Geisz, J. F., Steiner, M. A., Horowitz, K., Barraud, L., Ward, J. S., Schnabel, M., Descoeudres, A., Young, D. L., Woodhouse, M., Despeisse, M., Ballif, C., & Tamboli, A. (2017). Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions. Nature Energy, 2(9), 17144. https://doi.org/10.1038/nenergy.2017.144
Papež, N., Dallaev, R., Ţălu, Ş, & Kaštyl, J. (2021). Overview of the Current State of Gallium Arsenide-Based Solar Cells. Materials, 14(11), 3075. https://doi.org/10.3390/ma14113075
Article CAS PubMed PubMed Central Google Scholar
Mailoa, J. P., Bailie, C. D., Johlin, E. C., Hoke, E. T., Akey, A. J., Nguyen, W. H., McGehee, M. D., & Buonassisi, T. (2015). A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Applied Physics Letters, 106(12), 121105. https://doi.org/10.1063/1.4914179
Bailie, C. D., Christoforo, M. G., Mailoa, J. P., Bowring, A. R., Unger, E. L., Nguyen, W. H., Burschka, J., Pellet, N., Lee, J. Z., Grätzel, M., Noufi, R., Buonassisi, T., Salleo, A., & McGehee, M. D. (2015). Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energy & Environmental Science, 8(3), 956–963. https://doi.org/10.1039/C4EE03322A
Comments (0)