Comparative transcriptome analysis reveals candidate genes related to the sex differentiation of Schisandra chinensis

Adamczyk BJ, Lehti-Shiu MD, Fernandez DE (2007) The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis. Plant J 50:1007–1019. https://doi.org/10.1111/j.1365-313X.2007.03105.x

Article  CAS  PubMed  Google Scholar 

Ali Z, Raza Q, Atif RM, Aslam U, Ajmal M, Chung G (2019) Genetic and molecular control of floral organ identity in cereals. Int J Mol Sci 20:2743. https://doi.org/10.3390/ijms20112743

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alonso-Peral MM, Li J, Li Y, Allen RS, Schnippenkoetter W, Ohms S, White RG, Millar AA (2010) The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. Plant Physiol 154:757–771. https://doi.org/10.1104/pp.110.160630

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alsubaie B, Kharabian-Masouleh A, Furtado A, Al-Dossary O, Al-Mssallem I, Henry RJ (2023) Highly sex specific gene expression in jojoba. BMC Plant Biol 23:440. https://doi.org/10.1186/s12870-023-04444-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arora R, Agarwal P, Ray S, Singh AK, Singh VP, Tyagi AK, Kapoor S (2007) MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8:242. https://doi.org/10.1186/1471-2164-8-242

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aya K, Ueguchi-Tanaka M, Kondo M, Hamada K, Yano K, Nishimura M, Matsuoka M (2009) Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell 21:1453–1472. https://doi.org/10.1105/tpc.108.062935

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bačovský V, Čegan R, Tihlaříková E, Neděla V, Hudzieczek V, Smrža L, Janíček T, Beneš V, Hobza R (2022) Chemical genetics in Silene latifolia elucidate regulatory pathways involved in gynoecium development. J Exp Bot 73:2354–2368. https://doi.org/10.1093/jxb/erab538

Article  CAS  PubMed  Google Scholar 

Baker SC, Robinson-Beers K, Villanueva JM, Gaiser JC, Gasser CS (1997) Interactions among genes regulating ovule development in Arabidopsis thaliana. Genetics 145:1109–1124. https://doi.org/10.1093/genetics/145.4.1109

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bartrina I, Otto E, Strnad M, Werner T, Schmülling T (2011) Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell 23:69–80. https://doi.org/10.1105/tpc.110.079079

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berardini TZ, Reiser L, Li D, Mezheritsky Y, Muller R, Strait E, Huala E (2015) The Arabidopsis information resource: making and mining the “gold standard” annotated reference plant genome. Genesis 53:474–485. https://doi.org/10.1002/dvg.22877

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bowman JL (2000) The YABBY gene family and abaxial cell fate. Curr Opin Plant Biol 3:17–22. https://doi.org/10.1016/s1369-5266(99)00035-7

Article  CAS  PubMed  Google Scholar 

Brazel AJ, Fattorini R, McCarthy J, Franzen R, Rümpler F, Coupland G, Ó’Maoiléidigh DS (2023) AGAMOUS mediates timing of guard cell formation during gynoecium development. PLoS Genet 19:e1011000. https://doi.org/10.1371/journal.pgen.1011000

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12(1):59–60. https://doi.org/10.1038/nmeth.3176

Article  CAS  PubMed  Google Scholar 

Buttar ZA, Yang Y, Sharif R, Wu SN, Xie Y, Wang CJA (2020) Genome Wide Identification, characterization, and expression analysis of YABBY-gene family in wheat (Triticum aestivum L.). Agronomy 10:1189. https://doi.org/10.3390/agronomy10081189

Article  CAS  Google Scholar 

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao WL, Song Q, Meng XC (2015) Regulation on female-male flower ratio of monoecious plant Schisandra chinensis based on reactive oxygen species (ROS). Zhong Yao Cai 38:211–214. https://doi.org/10.13863/j.issn1001-4454.2015.02.001

Article  CAS  PubMed  Google Scholar 

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973. https://doi.org/10.1093/bioinformatics/btp348

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaban I, Baranova E, Kononenko N, Khaliluev M, Smirnova E (2019) Distinct differentiation characteristics of endothelium determine its ability to form pseudo-embryos in tomato ovules. Int J Mol Sci 21:12. https://doi.org/10.3390/ijms21010012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen MS, Pan BZ, Fu Q, Tao YB, Martínez-Herrera J, Niu L, Ni J, Dong Y, Zhao ML, Xu ZF (2016) Comparative transcriptome analysis between gynoecious and monoecious plants identifies regulatory networks controlling sex determination in Jatropha curcas. Front Plant Sci 7:1953. https://doi.org/10.3389/fpls.2016.01953

Article  PubMed  Google Scholar 

Chen L, Zhang J, Li H, Niu J, Xue H, Liu B, Wang Q, Luo X, Zhang F, Zhao D, Cao S (2017) Transcriptomic analysis reveals candidate genes for female sterility in pomegranate flowers. Front Plant Sci 8:1430. https://doi.org/10.3389/fpls.2017.01430

Article  PubMed  PubMed Central  Google Scholar 

Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202. https://doi.org/10.1016/j.molp.2020.06.009

Article  CAS  PubMed  Google Scholar 

Crawford BC, Ditta G, Yanofsky MF (2007) The NTT gene is required for transmitting-tract development in carpels of Arabidopsis thaliana. Curr Biol 17:1101–1108. https://doi.org/10.1016/j.cub.2007.05.079

Article  CAS  PubMed  Google Scholar 

Debeaujon I, Peeters AJ, Léon-Kloosterziel KM, Koornneef M (2001) The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13:853–871. https://doi.org/10.1105/tpc.13.4.853

Article  CAS  PubMed  PubMed Central  Google Scholar 

Díaz-Riquelme J, Lijavetzky D, Martínez-Zapater JM, Carmona MJ (2009) Genome-wide analysis of MIKCC-type MADS box genes in grapevine. Plant Physiol 149:354–369. https://doi.org/10.1104/pp.108.131052

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duan K, Fu H, Fang D, Wang K, Zhang W, Liu H, Sahu SK, Chen X (2022) Genome-wide analysis of the MADS-Box gene family in holoparasitic plants (Balanophora subcupularis and Balanophora fungosa var. globosa). Front Plant Sci 13:846697. https://doi.org/10.3389/fpls.2022.846697

Article  PubMed  PubMed Central  Google Scholar 

Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581. https://doi.org/10.1016/j.tplants.2010.06.005

Article  CAS  PubMed  Google Scholar 

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ehlers K, Bhide AS, Tekleyohans DG, Wittkop B, Snowdon RJ, Becker A (2016) The MADS Box genes ABS, SHP1, and SHP2 are essential for the coordination of cell divisions in ovule and seed coat development and for endosperm formation in Arabidopsis thaliana. PLoS One 11:e0165075. https://doi.org/10.1371/journal.pone.0165075

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng X, Yang Z, Xiu-Rong W, Ying W (2020) Transcriptomic differences between male and female Trachycarpus fortunei. Sci Rep-UK 10:12338. https://doi.org/10.1038/s41598-020-69107-7

Article  CAS  Google Scholar 

Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152. https://doi.org/10.1093/bioinformatics/bts565

Article  CAS  PubMed 

Comments (0)

No login
gif