In silico analysis of () gene in different cultivars of

Aghdam MS, Jannatizadeh A, Luo Z, Paliyath G (2018) Ensuring sufficient intracellular ATP supplying and friendly extracellular ATP signaling attenuates stresses, delays senescence and maintains quality in horticultural crops during postharvest life. Trends Food Sci Technol 76:67–81. https://doi.org/10.1016/j.tifs.2018.04.003

Article  CAS  Google Scholar 

Ahmad P, Alyemeni M, Ahanger M, Egamberdieva D et al (2018) Salicylic acid (SA) induced alterations in growth, biochemical attributes and antioxidant enzyme activity in faba bean (Vicia faba L.) seedlings under NaCl toxicity. Russ J Plant Physiol 65:104–114. https://doi.org/10.1134/S1021443718010132

Article  CAS  Google Scholar 

Akram MZ, Libutti A, Rivelli AR (2024) Drought stress in quinoa: Effects, responsive mechanisms, and management through biochar amended soil: A Review. Agriculture 14:1418. https://doi.org/10.3390/agriculture14081418

Article  CAS  Google Scholar 

Arguello-Hernández P, Samaniego I, Leguizamo A, Bernalte-García MJ et al (2024) Nutritional and Functional Properties of Quinoa (Chenopodium quinoa Willd.) Chimborazo Ecotype: Insights into Chemical Composition. Agriculture 14:396. https://doi.org/10.3390/agriculture14030396

Babu MM, Luscombe NM, Aravind L, Gerstein M et al (2004) Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol 14:283–291. https://doi.org/10.1016/j.sbi.2004.05.004

Article  CAS  PubMed  Google Scholar 

Chiang GC, Barua D, Kramer EM, Amasino RM et al (2009) Major flowering time gene, FLOWERING LOCUS C, regulates seed germination in Arabidopsis thaliana. Proc Natl Acad Sci 106:11661–11666. https://doi.org/10.1073/pnas.0901367106

Article  PubMed  PubMed Central  Google Scholar 

Cui K, Noor H, Noor F, Ding P et al (2024) Study of glutathione S-transferase (CqGSTs) gene expression patterns, the response of basic helix–loop–helix (bHLH) transcription factor and genome-wide identification gene family in quinoa (Chenopodium quinoa Willd.) and its mechanisms of salt stress tolerance. Br J Botan 47:901–924. https://doi.org/10.1007/s40415-023-00968-8

Article  Google Scholar 

D’Agostino N, Aversano M, Chiusano ML (2005) ParPEST: a pipeline for EST data analysis based on parallel computing. BMC Bioinformatics 6:1–9. https://doi.org/10.1186/1471-2105-6-S4-S9

Article  CAS  Google Scholar 

Di H, Tian Y, Zu H, Meng X et al (2015) Enhanced salinity tolerance in transgenic maize plants expressing a BADH gene from Atriplex micrantha. Euphytica 206:775–783. https://doi.org/10.1007/s10681-015-1515-z

Article  CAS  Google Scholar 

Ding Y, Shi Y, Yang S (2019) Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol 222:1690–1704. https://doi.org/10.1111/nph.15696

Article  PubMed  Google Scholar 

Fitzgerald TL, Waters DL, Henry RJ (2009) Betaine aldehyde dehydrogenase in plants. Plant Biol 11:119–130. https://doi.org/10.1111/j.1438-8677.2008.00161.x

Article  CAS  PubMed  Google Scholar 

García-Parra M, Zurita-Silva A, Stechauner-Rohringer R, Roa-Acosta D et al (2020) Quinoa (Chenopodium quinoa Willd.) and its relationship with agroclimatic characteristics: A Colombian perspective. Chil J Agric Res 80:290–302. https://doi.org/10.4067/S0718-58392020000200290

Article  Google Scholar 

Golestan Hashemi FS, Ismail MR, Rafii MY, Aslani F et al (2018) Critical multifunctional role of the betaine aldehyde dehydrogenase gene in plants. Biotechnol Biotechnol Equip 32:815–829. https://doi.org/10.1080/13102818.2018.1478748

Article  CAS  Google Scholar 

Hong S-C, Hong CR, Choi J (2025) Chapter 4 - Introductory applied bioinformatics. In: Asiegbu FO, Kovalchuk A, editors. Forest Microbiology: Academic Press. p 53–66. https://doi.org/10.1016/B978-0-443-21903-0.00005-9

Jiang Y, Yasir M, Cao Y, Hu L et al (2023) Physiological and biochemical characteristics and response patterns of Salinity Stress Responsive Genes (SSRGs) in Wild Quinoa (Chenopodium quinoa L.). Phyt-Int J Ex Botan 92:399–410. https://doi.org/10.32604/phyton.2022.022742

Kanwal N, Al Samarrai OR, Al-Zaidi HMH, Mirzaei AR et al (2023) Comprehensive analysis of microRNA (miRNA) in cancer cells. Cell Mol Biomed Rep 3:89–97. https://doi.org/10.55705/cmbr.2022.364591.1070

Larkin MA, Blackshields G, Brown NP, Chenna R et al (2007) Clustal W and Clustal X version 2.0. bioinformatics 23:2947–2948. https://doi.org/10.1093/bioinformatics/btm404

Lei H, Su S, Ma L, Wen Y et al (2017) Molecular cloning and functional characterization of CoFT1, a homolog of FLOWERING LOCUS T (FT) from Camellia oleifera. Gene 626:215–226. https://doi.org/10.1016/j.gene.2017.05.044

Article  CAS  PubMed  Google Scholar 

Li F (2023) Materiality and the politics of seeds in the global expansion of quinoa. Food Cult Soc 26:867–885. https://doi.org/10.1080/15528014.2022.2152608

Article  Google Scholar 

Maestro-Gaitán I, Redondo-Nieto M, González-Bodí S, Rodríguez-Casillas L et al (2025) Insights into quinoa endophytes: core bacterial communities reveal high stability to water stress and genotypic variation. Environ Microb 20:16. https://doi.org/10.1186/s40793-025-00673-x

Article  CAS  Google Scholar 

Maldonado-Taipe N, Patirange DS, Schmöckel SM, Jung C et al (2021) Validation of suitable genes for normalization of diurnal gene expression studies in Chenopodium quinoa. PLoS ONE 16:e0233821. https://doi.org/10.1371/journal.pone.0233821

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rollano-Peñaloza OM, Mollinedo PA, Widell S, Rasmusson AG (2021) Transcriptomic analysis of quinoa reveals a group of germin-like proteins induced by trichoderma. Frontiers in Fungal Biology 2:768648. https://doi.org/10.3389/ffunb.2021.768648

Article  PubMed  PubMed Central  Google Scholar 

Salehi Sardoei A., Rezaei H, Ghasemi H (2021). In silico evaluation of expansin-gene function in softening and fruit ripening. J Agric Sci Eng 3(2), 73–83. https://doi.org/10.22034/jpbb.2021.302209.1014

Santhoshi Y, Anjana AB, Zala H, Bosamia T et al (2025) Comprehensive analysis of the NHX gene family and its regulation under salt and drought stress in quinoa (Chenopodium quinoa Willd.). Genes 16:70. https://doi.org/10.3390/genes16010070

Sardoei AS, Sharifani M, Sarmast MK, Ghasemnejhad M et al (2024) In silico characterization of the Limonene synthase gene in citrus species under freezing tolerance. Ind Crops Prod 208:117915. https://doi.org/10.1016/j.indcrop.2023.117915

Article  CAS  Google Scholar 

Sayers EW, Barrett T, Benson DA, Bolton E et al (2010) Database resources of the national center for biotechnology information. Nucleic Acids Res 39:D38–D51. https://doi.org/10.1093/nar/gkq1172

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharma A, Bejerano PIA, Maldonado IC, de Donato CM et al (2019) Genome-wide computational prediction and experimental validation of quinoa (Chenopodium quinoa) microRNAs. Can J Plant Sci 99:666–675. https://doi.org/10.1139/cjps-2018-0296

Article  CAS  Google Scholar 

Stiti N, Missihoun TD, Kotchoni S, Kirch H-H et al (2011) Aldehyde dehydrogenases in arabidopsis thaliana: biochemical requirements, metabolic pathways, and functional analysis. Front Plant Sci 2. https://doi.org/10.3389/fpls.2011.00065

Taiz L, Zeiger E, Møller IM, Murphy A. 2015 Plant physiology and Development. Sunderland, USA: Sinauer Associates Incorporated. https://doi.org/10.5555/20173165866

Tamura K, Stecher G, Peterson D, Filipski A et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang P, Ren A, Jiang Z, Wang R et al (2024) Evaluation of quinoa varieties for adaptability and yield potential in low altitudes and correlation with agronomic traits. Agronomy 14:852. https://doi.org/10.3390/agronomy14040852

Article  Google Scholar 

Vassilev D, Leunissen J, Atanassov A, Nenov A et al (2005) Application of bioinformatics in plant breeding. Biotechnol Biotechnol Equip 19:139–152. https://doi.org/10.1080/13102818.2005.10817293

Article  Google Scholar 

Wang Y-M, Meng Y-L, Nii N (2004) Changes in glycine betaine and related enzyme contents in Amaranthus tricolor under salt stress. J Plant Physiol Mol Biol 30:496–502. https://pubmed.ncbi.nlm.nih.gov/15627702/

Xiao-Lin Z, Bao-Qiang W, Xiao-Hong W (2022) Identification and expression analysis of the CqSnRK2 gene family and a functional study of the CqSnRK2. 12 gene in quinoa (Chenopodium quinoa Willd.). BMC genomics 23:397. https://doi.org/10.1186/s12864-022-08626-1

Yamamoto YY, Obokata J (2007) PPDB: a plant promoter database. Nucleic Acids Res 36:D977–D981. https://doi.org/10.1093/nar/gkm785

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif