Metabolic engineering of lipids for crop resilience and nutritional improvements towards sustainable agriculture

Amoah RA, Akromah R, Asibuo JY, Wireko-Kena A, Asare KB, Lamptey M, Gyamfi BA (2020) Mode of inheritance and combining ability of oleic acid content in groundnut (Arachishypogaea L.). Ecol Genet Genom 17:100064. https://doi.org/10.1016/j.egg.2020.100064

Article  Google Scholar 

Assmann KE, Adjibade M, Hercberg S, Galan P, Kesse-Guyot E (2018) Unsaturated fatty acid intakes during midlife are positively associated with later cognitive function in older adults with modulating effects of antioxidant supplementation. J Nutr 148:1938–1945. https://doi.org/10.1093/jn/nxy206

Article  PubMed  Google Scholar 

Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med Cell Long 2014:360438. https://doi.org/10.1155/2014/360438

Article  CAS  Google Scholar 

Balmer D, Flors V, Glauser G, Mauch-Mani B (2013) Metabolomics of cereals under biotic stress: current knowledge and techniques. Front Plant Sci 4:82. https://doi.org/10.3389/fpls.2013.00082

Article  PubMed  PubMed Central  Google Scholar 

Barrero-Sicilia C, Silvestre S, Haslam RP, Michaelson LV (2017) Lipid remodeling: Unravelling the response to cold stress in Arabidopsis and its extremophile relative Eutremasalsugineum. Plant Sci 263:194–200. https://doi.org/10.1016/j.plantsci.2017.07.017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bitrián M, Zarza X, Altabella T, TiburcioAF AR (2012) Polyamines under abiotic stress: metabolic crossroads and hormonal crosstalks in plants. Metabolites 2:516–528. https://doi.org/10.3390/metabo2030516

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blanksby SJ, Mitchell TW (2010) Advances in mass spectrometry for lipidomics. Annual Rev Anal Chem 3:433–465. https://doi.org/10.1146/annurev.anchem.111808.073705

Article  CAS  Google Scholar 

Bollinger CR, Teixeira G, Levental KR (2020) Membrane lipid composition and its remodeling in response to oxidative stress. Trend Biochem Sci 45:671–683. https://doi.org/10.3390/ijms20092167

Article  CAS  Google Scholar 

Borrelli GM, Fragasso M, Nigro F, Platani C, Papa R, Beleggia R, Trono D (2018) Analysis of metabolic and mineral changes in response to salt stress in durum wheat (Triticum turgidum ssp. durum) genotypes, which differ in salinity tolerance. Plant Physiol Biochem 133:57–70. https://doi.org/10.1016/j.plaphy.2018.10.025

Article  CAS  PubMed  Google Scholar 

Buttar ZA, Wu SN, Arnao MB, Wang C, Ullah I, Wang C (2020) Melatonin suppressed the heat stress-induced damage in wheat seedlings by modulating the antioxidant machinery. Plants 9:809. https://doi.org/10.3390/plants9070809

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cagliari A, Margis R, Maraschin FDS, Zolet ACT, Morais GLD, Margis-Pinheiro M (2011) Biosynthesis of triacylglycerols (TAGs) in plants and algae. Int J Plant Biol 2:40–52. https://doi.org/10.4081/pb.2011.e10

Article  CAS  Google Scholar 

Cai G, Wang G, Wang L, Pan J, Liu Y, Li D (2014) ZmMKK1, a novel group A mitogen-activated protein kinase gene in maize, conferred chilling stress tolerance and was involved in pathogen defense in transgenic tobacco. Plant Sci 214:57–73. https://doi.org/10.1016/j.plantsci.2013.09.014

Article  CAS  PubMed  Google Scholar 

Chakraborty A, Bhattacharjee S (2015) Differential competence of redox-regulatory mechanism under extremes of temperature determines growth performances and cross tolerance in two indica rice cultivars. J Plant Physiol 176:65–77. https://doi.org/10.1016/j.jplph.2014.10.016

Article  CAS  PubMed  Google Scholar 

Chen F, Fang P, Peng Y, Zeng W, Zhao X, Ding Y, Ren B (2019) Comparative proteomics of salt-tolerant and salt-sensitive maize inbred lines to reveal the molecular mechanism of salt tolerance. Int J Mol Sci 20:4725. https://doi.org/10.3390/ijms20194725

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen S, Zhang W, Zhang Q, Li B, Zhang M, Qin J, Jia C (2025) SlNAC12, a novel NAC-type transcription factor, confers salt stress tolerance in tomato. Plant Cell Rep 44:1–14. https://doi.org/10.1007/s00299-024-03400-x

Article  CAS  Google Scholar 

Cheng B, Zhou M, Tang T, Hassan MJ, Tan M, Li Z, Peng Y (2023) A Trifolium repens flavodoxin-like quinone reductase 1 (TrFQR1) improves plant adaptability to high temperature associated with oxidative homeostasis and lipids remodeling. Plant J 115:369–385. https://doi.org/10.1111/tpj.16230

Article  CAS  PubMed  Google Scholar 

Cook R, Lupette J, Benning C (2021) The role of chloroplast membrane lipid metabolism in plant environmental responses. Cells 10:706. https://doi.org/10.3390/cells10030706

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dar AA, Choudhury AR, Kancharla PK, Arumugam N (2017) The FAD2 gene in plants: occurrence, regulation and role. Front Plant Sci 8:1789. https://doi.org/10.3389/fpls.2017.01789

Article  PubMed  PubMed Central  Google Scholar 

Dias C, Santos JA, Reis A, Lopes da Silva T (2023) The use of oleaginous yeasts and microalgae grown in brewery wastewater for lipid production and nutrient removal: a review. Waste Biomass Valorize 14:1799–1822. https://doi.org/10.1007/s12649-023-02032-8

Article  CAS  Google Scholar 

Ding Y, Zhu J, Zhao D, Liu Q, Yang Q, Zhang T (2021) Targeting cis-regulatory elements for rice grain quality improvement. Front Plant Sci 12:705834. https://doi.org/10.3389/fpls.2021.705834

Article  PubMed  PubMed Central  Google Scholar 

Evans JR, Lawson T (2020) From green to gold: agricultural revolution for food security. J Exp Bot 71:2211–2215. https://doi.org/10.1093/jxb/eraa110

Article  CAS  PubMed  Google Scholar 

Fahy E, Cotter D, Sud M, Subramaniam S (2011) Lipid classification, structures and tools. Biochimicaet Biophysica Acta (BBA) Mol Cell Biol Lipids 1811:637–647. https://doi.org/10.1016/j.bbalip.2011.06.009

Article  CAS  Google Scholar 

Gaschler MM, Stockwell BR (2017) Lipid peroxidation in cell death. Biochem Biophys Res Comm 482:419–425. https://doi.org/10.1016/j.bbrc.2016.10.086

Article  CAS  PubMed  Google Scholar 

Gilbert N (2012) Drought devastates US crops. Nature 11065

Ginter E, Simko V (2016) New data on harmful effects of trans-fatty acids. Bratislavskelekarskelisty 117:251–253. https://doi.org/10.4149/bll_2016_048

Article  CAS  Google Scholar 

Gomez RE, Lupette J, Chambaud C, Castets J, Ducloy A, Cacas JL, Bernard A (2021) How lipids contribute to autophagosome biogenesis, a critical process in plant responses to stresses. Cells 10:1272. https://doi.org/10.3390/cells10061272

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gouvinhas I, Machado N, Cunha M, Pereira M, Matos C, Gomes S, Barros AI (2015) Trace element content of monovarietal and commercial Portuguese olive oils. J of Oleo Sci 64:1083–1093. https://doi.org/10.5650/jos.ess15101

Article  CAS  Google Scholar 

Gunenc AN, Graf B, Stark H, Chari A (2022) Fatty acid synthase: structure, function and regulation. Macromol Protein Complexes IV: Struct Funct 1–33. https://doi.org/10.1007/978-3-031-00793-4_1.

Gupta P, De B (2017) Metabolomics analysis of rice responses to salinity stress revealed elevation of serotonin, and gentisic acid levels in leaves of tolerant varieties. Plant Sig Behav 12:e1335845. https://doi.org/10.1080/15592324.2017.1335845

Article  CAS  Google Scholar 

Gupta P, Singh R, Sharma A (2021) Lipid metabolism in plant stress physiology: Recent advancements and future perspectives. Plant Sci Today 8:345–359. https://doi.org/10.3390/plants9070871

Article  CAS  Google Scholar 

Han Z, Xiong D, Schneiter R, Tian C (2023) The function of plant PR1 and other members of the CAP protein superfamily in plant-pathogen interactions. Mol Plant Pathol 24:651–668. https://doi.org/10.1111/mpp.13320

Article  CAS 

Comments (0)

No login
gif