Liensinine reduces acute lung injury brought on by lipopolysaccharide by inhibiting the activation of the NF-κB signaling pathway through modification of the Src/TRAF6/TAK1 axis

Ahmad I, Fakhri S, Khan H, Jeandet P, Aschner M, Yu Z-L (2020) Targeting cell cycle by β-carboline alkaloids in vitro: novel therapeutic prospects for the treatment of cancer. Chem Biol Interact 330:109229. https://doi.org/10.1016/j.cbi.2020.109229

Article  CAS  PubMed  Google Scholar 

Alikiaii B, Bagherniya M, Askari G, Johnston TP, Sahebkar A (2021) The role of phytochemicals in sepsis: a mechanistic and therapeutic perspective. BioFactors 47:19–40. https://doi.org/10.1002/biof.1694

Article  CAS  PubMed  Google Scholar 

Antonia RJ, Hagan RS, Baldwin AS (2021) Expanding the view of IKK: new substrates and new biology. Trends Cell Biol 31:166–178. https://doi.org/10.1016/j.tcb.2020.12.003

Article  CAS  PubMed  Google Scholar 

Bellani G, Laffey JG, Pham T, Fan E (2016) The LUNG SAFE study: a presentation of the prevalence of ARDS according to the Berlin definition! Crit Care 20:268. https://doi.org/10.1186/s13054-016-1443-x

Article  PubMed  PubMed Central  Google Scholar 

Beutler B (2000) Tlr4: central component of the sole mammalian LPS sensor. Curr Opin Immunol 12:20–26. https://doi.org/10.1016/s0952-7915(99)00046-1

Article  CAS  PubMed  Google Scholar 

Chen ZJ (2012) Ubiquitination in signaling to and activation of IKK. Immunol Rev 246:95–106. https://doi.org/10.1111/j.1600-065X.2012.01108.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen C, Li L, Liu X, Zhang D, Liu Y, Li Y (2023) 23-O-acetylshengmanol-3-O-α-L-arabinoside alleviates lipopolysaccharide-induced acute lung injury through inhibiting IκB/NF-κB and MAPK/AP-1 signaling pathways. J Ethnopharmacol 300:115725. https://doi.org/10.1016/j.jep.2022.115725

Article  CAS  PubMed  Google Scholar 

Cho RL, Yang CC, Lee IT, Lin CC, Chi PL, Hsiao LD, Yang CM (2016) Lipopolysaccharide induces ICAM-1 expression via a c-Src/NADPH oxidase/ROS-dependent NF-κB pathway in human pulmonary alveolar epithelial cells. American journal of physiology. Lung Cell Mol Physiol 310:L639-657. https://doi.org/10.1152/ajplung.00109.2014

Article  Google Scholar 

Cohen P, Strickson S (2017) The role of hybrid ubiquitin chains in the MyD88 and other innate immune signalling pathways. Cell Death Differ 24:1153–1159. https://doi.org/10.1038/cdd.2017.17

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ding YH, Song YD, Wu YX, He HQ, Yu TH, Hu YD, Zhang DP, Jiang HC, Yu KK, Li XZ, Sun L, Qian F (2019) Isoalantolactone suppresses LPS-induced inflammation by inhibiting TRAF6 ubiquitination and alleviates acute lung injury. Acta Pharmacol Sin 40:64–74. https://doi.org/10.1038/s41401-018-0061-3

Article  CAS  PubMed  Google Scholar 

Fan H, Cui J, Liu F, Zhang W, Yang H, He N, Dong Z, Dong J (2022) Malvidin protects against lipopolysaccharide-induced acute liver injury in mice via regulating Nrf2 and NLRP3 pathways and suppressing apoptosis and autophagy. Eur J Pharmacol 933:175252. https://doi.org/10.1016/j.ejphar.2022.175252

Article  CAS  PubMed  Google Scholar 

Ganter MT, Roux J, Miyazawa B, Howard M, Frank JA, Su G, Sheppard D, Violette SM, Weinreb PH, Horan GS, Matthay MA, Pittet JF (2008) Interleukin-1beta causes acute lung injury via alphavbeta5 and alphavbeta6 integrin-dependent mechanisms. Circ Res 102:804–812. https://doi.org/10.1161/circresaha.107.161067

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghosh S, Hayden MS (2008) New regulators of NF-kappaB in inflammation. Nat Rev Immunol 8:837–848. https://doi.org/10.1038/nri2423

Article  CAS  PubMed  Google Scholar 

Han S, Yuan R, Cui Y, He J, Wang QQ, Zhuo Y, Yang S, Gao H (2022) Hederasaponin C alleviates lipopolysaccharide-induced acute lung injury in vivo and in vitro through the PIP2/NF-κB/NLRP3 signaling pathway. Front Immunol 13:846384. https://doi.org/10.3389/fimmu.2022.846384

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hariharan A, Hakeem AR, Radhakrishnan S, Reddy MS, Rela M (2021) The role and therapeutic potential of NF-kappa-B pathway in severe COVID-19 patients. Inflammopharmacology 29:91–100. https://doi.org/10.1007/s10787-020-00773-9

Article  CAS  PubMed  Google Scholar 

Jeong Y S (2014) The role of TRAF6 phosphorylation in Src/TRAF6-mediated IKK, JNK, Akt activation and tumorigenesis. In: Graduate School of Biomedical Sciences (The Texas Medical Center Library, The University of Texas)

Jeong D, Yi YS, Sung GH, Yang WS, Park JG, Yoon K, Yoon DH, Song C, Lee Y, Rhee MH, Kim TW, Kim JH, Cho JY (2014) Anti-inflammatory activities and mechanisms of Artemisia asiatica ethanol extract. J Ethnopharmacol 152:487–496. https://doi.org/10.1016/j.jep.2014.01.030

Article  CAS  PubMed  Google Scholar 

Ji YX, Zhang P, Zhang XJ, Zhao YC, Deng KQ, Jiang X, Wang PX, Huang Z, Li H (2016) The ubiquitin E3 ligase TRAF6 exacerbates pathological cardiac hypertrophy via TAK1-dependent signalling. Nat Commun 7:11267. https://doi.org/10.1038/ncomms11267

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jia F, Liu Y, Dou X, Du C, Mao T, Liu X (2022a) Liensinine inhibits osteosarcoma growth by ROS-mediated suppression of the JAK2/STAT3 signaling pathway. Oxid Med Cell Longev 2022:8245614. https://doi.org/10.1155/2022/8245614

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jia X, Zhang K, Feng S, Li Y, Yao D, Liu Q, Liu D, Li X, Huang J, Wang H, Wang J (2022) Total glycosides of Rhodiola rosea L. attenuate LPS-induced acute lung injury by inhibiting TLR4/NF-κB pathway. Biomed pharmacother. 158:114186. https://doi.org/10.1016/j.biopha.2022.114186

Article  CAS  PubMed  Google Scholar 

Jia X, Zhang K, Feng S, Li Y, Yao D, Liu Q, Liu D, Li X, Huang J, Wang H, Wang J (2023) Total glycosides of Rhodiola rosea L. attenuate LPS-induced acute lung injury by inhibiting TLR4/NF-κB pathway. Biomed Pharmacother 158:114186. https://doi.org/10.1016/j.biopha.2022.114186

Article  CAS  PubMed  Google Scholar 

Jose RJ, Manuel A (2020) COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med 8:e46–e47. https://doi.org/10.1016/s2213-2600(20)30216-2

Article  CAS  PubMed  Google Scholar 

Kojima K, Arikawa T, Saita N, Goto E, Tsumura S, Tanaka R, Masunaga A, Niki T, Oomizu S, Hirashima M, Kohrogi H (2011) Galectin-9 attenuates acute lung injury by expanding CD14- plasmacytoid dendritic cell-like macrophages. Am J Respir Crit Care Med 184:328–339. https://doi.org/10.1164/rccm.201010-1566OC

Article  CAS  PubMed  Google Scholar 

Lamothe B, Besse A, Campos AD, Webster WK, Wu H, Darnay BG (2007) Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of IκB kinase activation. J Biol Chem 282:4102–4112. https://doi.org/10.1074/jbc.M609503200

Article  CAS  PubMed  Google Scholar 

Landström M (2010) The TAK1-TRAF6 signalling pathway. Int J Biochem Cell Biol 42:585–589. https://doi.org/10.1016/j.biocel.2009.12.023

Article  CAS  PubMed  Google Scholar 

Lee D, Kim JW, Lee CY, Oh J, Hwang SH, Jo M, Kim SA, Choi W, Noh JK, Yi DK, Song M, Kim HG, Cho JY (2022) Guettarda crispiflora Vahl methanol extract ameliorates acute lung injury and gastritis by suppressing Src phosphorylation. Plants. https://doi.org/10.3390/plants11243560

Article  PubMed  PubMed Central  Google Scholar 

Li X, Stark GR (2002) NFκB-dependent signaling pathways. Exp Hematol 4:285–296. https://doi.org/10.1016/s0301-472x(02)00777-4

Article  Google Scholar 

Li Q, Verma IM (2002) NF-kappaB regulation in the immune system. Nat Rev Immunol 2:725–734. https://doi.org/10.1038/nri910

Article  CAS  PubMed  Google Scholar 

Li W, Li D, Chen Y, Abudou H, Wang H, Cai J, Wang Y, Liu Z, Liu Y, Fan H (2022) Classic signaling pathways in alveolar injury and repair involved in sepsis-induced ALI/ARDS: new research progress and prospect. Dis Markers 2022:6362344. https://doi.org/10.1155/2022/6362344

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Z, Pan H, Yang J, Chen D, Wang Y, Zhang H, Cheng Y (2023) Xuanfei Baidu formula alleviates impaired mitochondrial dynamics and activated NLRP3 inflammasome by repressing NF-κB and MAPK pathways in LPS-induced ALI and inflammation models. Phytomedicine: Int J phytother phytopharmacol 108:154545. https://doi.org/10.1016/j.phymed.2022.154545

Article  CAS  Google Scholar 

Liang L, Ye S, Jiang R, Zhou X, Zhou J, Meng S (2022) Liensinine alleviates high fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) through suppressing oxidative stress and inflammation via regulating TAK1/AMPK signaling. Int Immunopharmacol 104:108306. https://doi.org/10.1016/j.intimp.2021.108306

Article  CAS  PubMed  Google Scholar 

Lima JA, Hamerski L (2019) Chapter 8—Alkaloids as potential multi-target drugs to treat alzheimer’s disease. In: Ur RA (ed) Studies in natural products chemistry. Elsevier, pp 301–334

Google Scholar 

Liu D, Huang SY, Sun JH, Zhang HC, Cai QL, Gao C, Li L, Cao J, Xu F, Zhou Y, Guan CX, Jin SW, Deng J, Fang XM, Jiang JX, Zeng L (2022) Sepsis-induced immunosuppression: mechanisms, diagnosis and current treatment options. Mil Med Res 9:56. https://doi.org/10.1186/s40779-022-00422-y

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif