Ahmed S, Kwatra M, Panda SR, Murty USN, Naidu VGM (2021) Andrographolide suppresses NLRP3 inflammasome activation in microglia through induction of parkin-mediated mitophagy in in-vitro and in-vivo models of Parkinson disease. Brain Behav Immun 91:142–158. https://doi.org/10.1016/j.bbi.2020.09.017
Ahmed S, Naidu V (2020) Andrograholide protect microglial activation via inhibiting mitochondrial ROS generation and NLRP3 inflammasome activation in in-vitro and in-vivo model of Parkinson’s disease. Mov Disord. https://doi.org/10.1002/mds.28268
Ahmed S, Panda SR, Kwatra M, Sahu BD, Naidu V (2022) Perillyl alcohol attenuates NLRP3 inflammasome activation and rescues dopaminergic neurons in experimental in vitro and in vivo models of Parkinson’s disease. ACS Chem Neurosci 13(1):53–68. https://doi.org/10.1021/acschemneuro.1c00550
Article CAS PubMed Google Scholar
Arioz BI, Tastan B, Tarakcioglu E, Tufekci KU, Olcum M, Ersoy N, Bagriyanik A, Genc K, Genc S (2019) Melatonin attenuates LPS-induced acute depressive-like behaviors and microglial NLRP3 inflammasome activation through the SIRT1/Nrf2 pathway. Front Immunol. https://doi.org/10.3389/fimmu.2019.01511
Article PubMed PubMed Central Google Scholar
Ascherio A, Schwarzschild MA (2016) The epidemiology of Parkinson’s disease: Risk factors and prevention. Lancet Neurol 15(12):1257–1272. https://doi.org/10.1016/S1474-4422(16)30230-7
Ashraf SA, Elkhalifa AEO, Siddiqui AJ, Patel M, Awadelkareem AM, Snoussi M, Ashraf MS, Adnan M, Hadi S (2020) Cordycepin for health and wellbeing: a potent bioactive metabolite of an entomopathogenic cordyceps medicinal fungus and its nutraceutical and therapeutic potential. Molecules (Basel, Switzerland) 25(12):2735. https://doi.org/10.3390/molecules25122735
Article CAS PubMed Google Scholar
Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, Hornung V, Latz E (2009) Cutting Edge: NF-κB Activating Pattern Recognition and Cytokine Receptors License NLRP3 Inflammasome Activation by Regulating NLRP3 Expression Abstract. J Immun 183(2):787–791. https://doi.org/10.4049/jimmunol.0901363
Bell-Temin H, Culver-Cochran AE, Chaput D, Carlson CM, Kuehl M, Burkhardt BR, Bickford PC, Liu B, Stevens SM (2015) Novel molecular insights into classical and alternative activation states of microglia as revealed by stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics. Mol Cellul Proteomics: MCP 14(12):3173–3184. https://doi.org/10.1074/mcp.M115.053926
Braak H, Del Tredici K, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211. https://doi.org/10.1016/s0197-4580(02)00065-9
Cheng X, Xu S, Zhang C, Qin K, Yan J, Shao X (2020) The BRCC3 regulated by Cdk5 promotes the activation of neuronal NLRP3 inflammasome in Parkinson’s disease models. Biochem Biophys Res Commun 522(3):647–654. https://doi.org/10.1016/j.bbrc.2019.11.141
Article CAS PubMed Google Scholar
Dobbs RJ, Charlett A, Purkiss AG, Dobbs SM, Weller C, Peterson DW (1999) Association of circulating TNF-alpha and IL-6 with ageing and parkinsonism. Acta Neurol Scand 100(1):34–41. https://doi.org/10.1111/j.1600-0404.1999.tb00721.x
Article CAS PubMed Google Scholar
Fan Z, Liang Z, Yang H, Pan Y, Zheng Y, Wang X (2017) Tenuigenin protects dopaminergic neurons from inflammation via suppressing NLRP3 inflammasome activation in microglia. J Neuroinflam. https://doi.org/10.1186/s12974-017-1036-x
Fernandez F, Lu D, Ha P, Costacurta P, Chavez R, Heller HC, Ruby NF (2014) Dysrhythmia in the suprachiasmatic nucleus inhibits memory processing. Science 346(6211):854–857. https://doi.org/10.1126/science.1259652
Article CAS PubMed PubMed Central Google Scholar
Gao M-R, Wang M, Jia Y-Y, Tian D-D, Liu A, Wang W-J, Yang L, Chen J-Y, Yang Q, Liu R, Wu Y-M (2020) Echinacoside protects dopaminergic neurons by inhibiting NLRP3/Caspase-1/IL-1β signaling pathway in MPTP-induced Parkinson’s disease model. Brain Res Bull 164:55–64. https://doi.org/10.1016/j.brainresbull.2020.08.015
Article CAS PubMed Google Scholar
Gao S, Xu T, Guo H, Deng Q, Xun C, Liang W, Sheng W (2019) Ameliorative effects of echinacoside against spinal cord injury via inhibiting NLRP3 inflammasome signaling pathway. Life Sci 237:116978. https://doi.org/10.1016/j.lfs.2019.116978
Article CAS PubMed Google Scholar
Gilligan PJ (2015) Recent progress in drug discovery for Parkinson’s disease. Curr Top Med Chem 15(10):905–907. https://doi.org/10.2174/156802661510150328222828
Article CAS PubMed Google Scholar
Gordon R, Albornoz EA, Christie DC, Langley MR, Kumar V, Mantovani S, Robertson AAB, Butler MS, Rowe DB, O’Neill LA, Kanthasamy AG, Schroder K, Cooper MA, Woodruff TM (2018) Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aah4066
Article PubMed PubMed Central Google Scholar
Han X, Sun S, Sun Y, Song Q, Zhu J, Song N, Chen M, Sun T, Xia M, Ding J, Lu M, Yao H, Hu G (2019) Small molecule-driven NLRP3 inflammation inhibition via interplay between ubiquitination and autophagy: Implications for Parkinson disease. Autophagy 15(11):1860–1881. https://doi.org/10.1080/15548627.2019.1596481
Article CAS PubMed PubMed Central Google Scholar
Han X, Xu T, Fang Q, Zhang H, Yue L, Hu G, Sun L (2021) Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy. Redox Biol 44:102010. https://doi.org/10.1016/j.redox.2021.102010
Article CAS PubMed PubMed Central Google Scholar
Harms AS, Ferreira SA, Romero-Ramos M (2021) Periphery and brain, innate and adaptive immunity in Parkinson’s disease. Acta Neuropathol 141(4):527–545. https://doi.org/10.1007/s00401-021-02268-5
Article CAS PubMed PubMed Central Google Scholar
Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng T-C, Gelpi E, Halle A, Korte M, Latz E, Golenbock DT (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493(7434):674–678. https://doi.org/10.1038/nature11729
Article CAS PubMed Google Scholar
Hooijmans CR, Rovers MM, De Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW (2014a) SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 14(1):43. https://doi.org/10.1186/1471-2288-14-43
Article PubMed PubMed Central Google Scholar
Hooijmans CR, Rovers MM, de Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW (2014b) SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. https://doi.org/10.1186/1471-2288-14-43
Article PubMed PubMed Central Google Scholar
Huang S, Chen Z, Fan B, Chen Y, Zhou L, Jiang B, Long H, Zhong W, Li X, Li Y (2021) A selective NLRP3 inflammasome inhibitor attenuates behavioral deficits and neuroinflammation in a mouse model of Parkinson’s disease. J Neuroimmunol 354:577543. https://doi.org/10.1016/j.jneuroim.2021.577543
Article CAS PubMed Google Scholar
Huang S, Liu H, Lin Y, Liu M, Li Y, Mao H, Zhang Z, Zhang Y, Ye P, Ding L, Zhu Z, Yang X, Chen C, Zhu X, Huang X, Guo W, Xu P, Lu L (2020) Berberine protects against NLRP3 inflammasome via ameliorating autophagic impairment in MPTP-induced Parkinson’s disease model. Front Pharmacol 11:618787. https://doi.org/10.3389/fphar.2020.618787
Article CAS PubMed Google Scholar
Jiang X, Tang P-C, Chen Q, Zhang X, Fan Y-Y, Yu B-C, Gu X-X, Sun Y, Ge X-Q, Zhang X-L (2019) Cordycepin exerts neuroprotective effects via an anti-apoptotic mechanism based on the mitochondrial pathway in a rotenone-induced parkinsonism rat model. CNS Neurol Disord Drug Targets 18(8):609–620. https://doi.org/10.2174/1871527318666190905152138
Article CAS PubMed Google Scholar
Jiang Z, Yin X, Wang M, Wang Y, Li F, Gao Y, Han G, Gao Z, Wang Z (2022) β-Hydroxybutyrate alleviates pyroptosis in MPP+/MPTP-induced Parkinson’s disease models via inhibiting STAT3/NLRP3/GSDMD pathway. Int Immunopharmacol 113(Pt B):109451. https://doi.org/10.1016/j.intimp.2022.109451
Comments (0)