Baicalein attenuates rotenone-induced SH-SY5Y cell apoptosis through binding to SUR1 and activating ATP-sensitive potassium channels

Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease: a review. JAMA. 2020;323:548–60.

Article  PubMed  Google Scholar 

Dorsey ER, Elbaz A, Nichols E, Abd-Allah F, Abdelalim A, C.Adsuar J, et al. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17:939–53.

Article  Google Scholar 

Vázquez-Vélez GE, Zoghbi HY. Parkinson’s disease genetics and pathophysiology. Annu Rev Neurosci. 2021;44:87–108.

Article  PubMed  Google Scholar 

Daniel NH, Aravind A, Thakur P. Are ion channels potential therapeutic targets for Parkinson’s disease? Neurotoxicology. 2021;87:243–57.

Article  CAS  PubMed  Google Scholar 

Liu M, Liu C, Xiao X, Han SS, Bi MX, Jiao Q, et al. Role of upregulation of the K(ATP) channel subunit SUR1 in dopaminergic neuron degeneration in Parkinson’s disease. Aging Cell. 2022;21:e13618.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao S, Wang M, Ma Z. Therapeutic potential of ATP-sensitive potassium channels in Parkinson’s disease. Brain Res Bull. 2021;169:1–7.

Article  CAS  PubMed  Google Scholar 

Minami K, Miki T, Kadowaki T, Seino S. Roles of ATP-sensitive K+ channels as metabolic sensors: studies of Kir6.x null mice. Diabetes. 2004;53:S176–80.

Article  CAS  PubMed  Google Scholar 

Yee AG, Freestone PS, Bai JZ, Lipski J. Paradoxical lower sensitivity of Locus Coeruleus than Substantia Nigra pars compacta neurons to acute actions of rotenone. Exp Neurol. 2017;287:34–43.

Article  CAS  PubMed  Google Scholar 

Liss B, Bruns R, Roeper J. Alternative sulfonylurea receptor expression defines metabolic sensitivity of K-ATP channels in dopaminergic midbrain neurons. EMBO J. 1999;18:833–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schiemann J, Schlaudraff F, Klose V, Bingmer M, Seino S, Magill PJ, et al. K-ATP channels in dopamine substantia nigra neurons control bursting and novelty-induced exploration. Nat Neurosci. 2012;15:1272–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han SS, Jiao Q, Bi MX, Du XX, Jiang H. The expression of K(ATP) channel subunits in alpha-synuclein-transfected MES23.5 cells. Ann Transl Med. 2018;6:170.

Article  PubMed  PubMed Central  Google Scholar 

Pang H, Xue W, Shi A, Li M, Li Y, Cao G, et al. Multiple-ascending-dose pharmacokinetics and safety evaluation of baicalein chewable tablets in healthy chinese volunteers. Clin Drug Investig. 2016;36:713–24.

Article  CAS  PubMed  Google Scholar 

Tarragó T, Kichik N, Claasen B, Prades R, Teixidó M, Giralt E. Baicalin, a prodrug able to reach the CNS, is a prolyl oligopeptidase inhibitor. Bioorg Med Chem. 2008;16:7516–24.

Article  PubMed  Google Scholar 

Tsai PL, Tsai TH. Pharmacokinetics of baicalin in rats and its interactions with cyclosporin A, quinidine and SKF-525A: a microdialysis study. Planta Med. 2004;70:1069–74.

Article  CAS  PubMed  Google Scholar 

Li Y, Zhao J, Hölscher C. Therapeutic potential of baicalein in Alzheimer’s disease and Parkinson’s disease. CNS Drugs. 2017;31:639–52.

Article  CAS  PubMed  Google Scholar 

Rui W, Li S, Xiao H, Xiao M, Shi J. Baicalein attenuates neuroinflammation by inhibiting NLRP3/caspase-1/GSDMD pathway in MPTP induced mice model of Parkinson’s disease. Int J Neuropsychopharmacol. 2020;23:762–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Y, Wei N, Li X. Preclinical evidence and possible mechanisms of baicalein for rats and mice with Parkinson’s disease: a systematic review and meta-analysis. Front Aging Neurosci. 2020;12:277.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sonawane SK, Uversky VN, Chinnathambi S. Baicalein inhibits heparin-induced Tau aggregation by initializing non-toxic Tau oligomer formation. Cell Commun Signal. 2021;19:16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao X, Kong D, Zhou Q, Wei G, Song J, Liang Y, et al. Baicalein alleviates depression-like behavior in rotenone- induced Parkinson’s disease model in mice through activating the BDNF/TrkB/CREB pathway. Biomed Pharmacother. 2021;140:111556.

Article  CAS  PubMed  Google Scholar 

Chen M, Peng L, Gong P, Zheng X, Sun T, Zhang X, et al. Baicalein mediates mitochondrial autophagy via miR-30b and the NIX/BNIP3 signaling pathway in Parkinson’s disease. Biochem Res Int. 2021;2021:2319412.

Article  PubMed  PubMed Central  Google Scholar 

Song Q, Peng S, Zhu X. Baicalein protects against MPP+/MPTP-induced neurotoxicity by ameliorating oxidative stress in SH-SY5Y cells and mouse model of Parkinson’s disease. Neurotoxicology. 2021;87:188–94.

Article  CAS  PubMed  Google Scholar 

Liu RZ, Zhang S, Zhang W, Zhao XY, Du GH. Baicalein attenuates brain iron accumulation through protecting aconitase 1 from oxidative stress in rotenone-induced Parkinson’s disease in Rats. Antioxidants (Basel). 2022;12:12.

Article  PubMed  Google Scholar 

Wang IC, Lin JH, Lee WS, Liu CH, Lin TY, Yang KT. Baicalein and luteolin inhibit ischemia/reperfusion-induced ferroptosis in rat cardiomyocytes. Int J Cardiol. 2023;375:74–86.

Article  PubMed  Google Scholar 

Du X, Xu H, Shi L, Jiang Z, Song N, Jiang H, et al. Activation of ATP-sensitive potassium channels enhances DMT1-mediated iron uptake in SK-N-SH cells in vitro. Sci Rep. 2016;6:33674.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kampa RP, Sęk A, Bednarczyk P, Szewczyk A, Calderone V, Testai L. Flavonoids as new regulators of mitochondrial potassium channels: contribution to cardioprotection. J Pharm Pharmacol. 2023;75:466–81.

Article  PubMed  Google Scholar 

Zhang X, Du L, Zhang W, Yang Y, Zhou Q, Du G. Therapeutic effects of baicalein on rotenone-induced Parkinson’s disease through protecting mitochondrial function and biogenesis. Sci Rep. 2017;7:9968.

Article  PubMed  PubMed Central  Google Scholar 

Liu J, Zheng X, Li W, Ren L, Li S, Yang Y, et al. Anti-tumor effects of Skp2 inhibitor AAA-237 on NSCLC by arresting cell cycle at G0/G1phase and inducing senescence. Pharmacol Res. 2022;181:106259.

Article  CAS  PubMed  Google Scholar 

Chandra J, Samali A, Orrenius S. Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med. 2000;29:323–33.

Article  CAS  PubMed  Google Scholar 

Martin GM, Sung MW, Yang Z, Innes LM, Kandasamy B, David LL, et al. Mechanism of pharmacochaperoning in a mammalian KATP channel revealed by cryo-EM. Elife. 2019;8:e46417.

Article  PubMed  PubMed Central  Google Scholar 

Bai Q, He J, Qiu J, Wang Y, Wang S, Xiu Y, et al. Rotenone induces KATP channel opening in PC12 cells in association with the expression of tyrosine hydroxylase. Oncol Rep. 2012;28:1376–84.

Article  CAS  PubMed  Google Scholar 

Zhang Z, Shi L, Du X, Jiao Q, Jiang H. Acute action of rotenone on excitability of catecholaminergic neurons in rostral ventrolateral medulla. Brain Res Bull. 2017;134:151–61.

Article  CAS  PubMed  Google Scholar 

Wu C, Yang K, Liu Q, Wakui M, Jin GZ, Zhen X, et al. Tetrahydroberberine blocks ATP-sensitive potassium channels in dopamine neurons acutely-dissociated from rat substantia nigra pars compacta. Neuropharmacology. 2010;59:567–72.

Article  CAS  PubMed  Google Scholar 

Xie J, Duan L, Qian X, Huang X, Ding J, Hu G. K(ATP) channel openers protect mesencephalic neurons against MPP+-induced cytotoxicity via inhibition of ROS production. J Neurosci Res. 2010;88:428–37.

Article  CAS  PubMed  Google Scholar 

Liu X, Wu JY, Zhou F, Sun XL, Yao HH, Yang Y, et al. The regulation of rotenone-induced inflammatory factor production by ATP-sensitive potassium channel expressed in BV-2 cells. Neurosci Lett. 2006;394:131–5.

Article  CAS  PubMed  Google Scholar 

Fan Y, Kong H, Ye X, Ding J, Hu G. ATP-sensitive potassium channels: uncovering novel targets for treating depression. Brain Struct Funct. 2016;221:3111–22.

Article  CAS  PubMed  Google Scholar 

Yee AG, Lee SM, Hunter MR, Glass M, Freestone PS, Lipski J. Effects of the Parkinsonian toxin MPP+ on electrophysiological properties of nigral dopaminergic neurons. Neurotoxicology. 2014;45:1–11.

Article  CAS  PubMed 

Comments (0)

No login
gif