Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease: a review. JAMA. 2020;323:548–60.
Dorsey ER, Elbaz A, Nichols E, Abd-Allah F, Abdelalim A, C.Adsuar J, et al. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17:939–53.
Vázquez-Vélez GE, Zoghbi HY. Parkinson’s disease genetics and pathophysiology. Annu Rev Neurosci. 2021;44:87–108.
Daniel NH, Aravind A, Thakur P. Are ion channels potential therapeutic targets for Parkinson’s disease? Neurotoxicology. 2021;87:243–57.
Article CAS PubMed Google Scholar
Liu M, Liu C, Xiao X, Han SS, Bi MX, Jiao Q, et al. Role of upregulation of the K(ATP) channel subunit SUR1 in dopaminergic neuron degeneration in Parkinson’s disease. Aging Cell. 2022;21:e13618.
Article CAS PubMed PubMed Central Google Scholar
Zhao S, Wang M, Ma Z. Therapeutic potential of ATP-sensitive potassium channels in Parkinson’s disease. Brain Res Bull. 2021;169:1–7.
Article CAS PubMed Google Scholar
Minami K, Miki T, Kadowaki T, Seino S. Roles of ATP-sensitive K+ channels as metabolic sensors: studies of Kir6.x null mice. Diabetes. 2004;53:S176–80.
Article CAS PubMed Google Scholar
Yee AG, Freestone PS, Bai JZ, Lipski J. Paradoxical lower sensitivity of Locus Coeruleus than Substantia Nigra pars compacta neurons to acute actions of rotenone. Exp Neurol. 2017;287:34–43.
Article CAS PubMed Google Scholar
Liss B, Bruns R, Roeper J. Alternative sulfonylurea receptor expression defines metabolic sensitivity of K-ATP channels in dopaminergic midbrain neurons. EMBO J. 1999;18:833–46.
Article CAS PubMed PubMed Central Google Scholar
Schiemann J, Schlaudraff F, Klose V, Bingmer M, Seino S, Magill PJ, et al. K-ATP channels in dopamine substantia nigra neurons control bursting and novelty-induced exploration. Nat Neurosci. 2012;15:1272–80.
Article CAS PubMed PubMed Central Google Scholar
Han SS, Jiao Q, Bi MX, Du XX, Jiang H. The expression of K(ATP) channel subunits in alpha-synuclein-transfected MES23.5 cells. Ann Transl Med. 2018;6:170.
Article PubMed PubMed Central Google Scholar
Pang H, Xue W, Shi A, Li M, Li Y, Cao G, et al. Multiple-ascending-dose pharmacokinetics and safety evaluation of baicalein chewable tablets in healthy chinese volunteers. Clin Drug Investig. 2016;36:713–24.
Article CAS PubMed Google Scholar
Tarragó T, Kichik N, Claasen B, Prades R, Teixidó M, Giralt E. Baicalin, a prodrug able to reach the CNS, is a prolyl oligopeptidase inhibitor. Bioorg Med Chem. 2008;16:7516–24.
Tsai PL, Tsai TH. Pharmacokinetics of baicalin in rats and its interactions with cyclosporin A, quinidine and SKF-525A: a microdialysis study. Planta Med. 2004;70:1069–74.
Article CAS PubMed Google Scholar
Li Y, Zhao J, Hölscher C. Therapeutic potential of baicalein in Alzheimer’s disease and Parkinson’s disease. CNS Drugs. 2017;31:639–52.
Article CAS PubMed Google Scholar
Rui W, Li S, Xiao H, Xiao M, Shi J. Baicalein attenuates neuroinflammation by inhibiting NLRP3/caspase-1/GSDMD pathway in MPTP induced mice model of Parkinson’s disease. Int J Neuropsychopharmacol. 2020;23:762–73.
Article CAS PubMed PubMed Central Google Scholar
Wang Y, Wei N, Li X. Preclinical evidence and possible mechanisms of baicalein for rats and mice with Parkinson’s disease: a systematic review and meta-analysis. Front Aging Neurosci. 2020;12:277.
Article CAS PubMed PubMed Central Google Scholar
Sonawane SK, Uversky VN, Chinnathambi S. Baicalein inhibits heparin-induced Tau aggregation by initializing non-toxic Tau oligomer formation. Cell Commun Signal. 2021;19:16.
Article CAS PubMed PubMed Central Google Scholar
Zhao X, Kong D, Zhou Q, Wei G, Song J, Liang Y, et al. Baicalein alleviates depression-like behavior in rotenone- induced Parkinson’s disease model in mice through activating the BDNF/TrkB/CREB pathway. Biomed Pharmacother. 2021;140:111556.
Article CAS PubMed Google Scholar
Chen M, Peng L, Gong P, Zheng X, Sun T, Zhang X, et al. Baicalein mediates mitochondrial autophagy via miR-30b and the NIX/BNIP3 signaling pathway in Parkinson’s disease. Biochem Res Int. 2021;2021:2319412.
Article PubMed PubMed Central Google Scholar
Song Q, Peng S, Zhu X. Baicalein protects against MPP+/MPTP-induced neurotoxicity by ameliorating oxidative stress in SH-SY5Y cells and mouse model of Parkinson’s disease. Neurotoxicology. 2021;87:188–94.
Article CAS PubMed Google Scholar
Liu RZ, Zhang S, Zhang W, Zhao XY, Du GH. Baicalein attenuates brain iron accumulation through protecting aconitase 1 from oxidative stress in rotenone-induced Parkinson’s disease in Rats. Antioxidants (Basel). 2022;12:12.
Wang IC, Lin JH, Lee WS, Liu CH, Lin TY, Yang KT. Baicalein and luteolin inhibit ischemia/reperfusion-induced ferroptosis in rat cardiomyocytes. Int J Cardiol. 2023;375:74–86.
Du X, Xu H, Shi L, Jiang Z, Song N, Jiang H, et al. Activation of ATP-sensitive potassium channels enhances DMT1-mediated iron uptake in SK-N-SH cells in vitro. Sci Rep. 2016;6:33674.
Article CAS PubMed PubMed Central Google Scholar
Kampa RP, Sęk A, Bednarczyk P, Szewczyk A, Calderone V, Testai L. Flavonoids as new regulators of mitochondrial potassium channels: contribution to cardioprotection. J Pharm Pharmacol. 2023;75:466–81.
Zhang X, Du L, Zhang W, Yang Y, Zhou Q, Du G. Therapeutic effects of baicalein on rotenone-induced Parkinson’s disease through protecting mitochondrial function and biogenesis. Sci Rep. 2017;7:9968.
Article PubMed PubMed Central Google Scholar
Liu J, Zheng X, Li W, Ren L, Li S, Yang Y, et al. Anti-tumor effects of Skp2 inhibitor AAA-237 on NSCLC by arresting cell cycle at G0/G1phase and inducing senescence. Pharmacol Res. 2022;181:106259.
Article CAS PubMed Google Scholar
Chandra J, Samali A, Orrenius S. Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med. 2000;29:323–33.
Article CAS PubMed Google Scholar
Martin GM, Sung MW, Yang Z, Innes LM, Kandasamy B, David LL, et al. Mechanism of pharmacochaperoning in a mammalian KATP channel revealed by cryo-EM. Elife. 2019;8:e46417.
Article PubMed PubMed Central Google Scholar
Bai Q, He J, Qiu J, Wang Y, Wang S, Xiu Y, et al. Rotenone induces KATP channel opening in PC12 cells in association with the expression of tyrosine hydroxylase. Oncol Rep. 2012;28:1376–84.
Article CAS PubMed Google Scholar
Zhang Z, Shi L, Du X, Jiao Q, Jiang H. Acute action of rotenone on excitability of catecholaminergic neurons in rostral ventrolateral medulla. Brain Res Bull. 2017;134:151–61.
Article CAS PubMed Google Scholar
Wu C, Yang K, Liu Q, Wakui M, Jin GZ, Zhen X, et al. Tetrahydroberberine blocks ATP-sensitive potassium channels in dopamine neurons acutely-dissociated from rat substantia nigra pars compacta. Neuropharmacology. 2010;59:567–72.
Article CAS PubMed Google Scholar
Xie J, Duan L, Qian X, Huang X, Ding J, Hu G. K(ATP) channel openers protect mesencephalic neurons against MPP+-induced cytotoxicity via inhibition of ROS production. J Neurosci Res. 2010;88:428–37.
Article CAS PubMed Google Scholar
Liu X, Wu JY, Zhou F, Sun XL, Yao HH, Yang Y, et al. The regulation of rotenone-induced inflammatory factor production by ATP-sensitive potassium channel expressed in BV-2 cells. Neurosci Lett. 2006;394:131–5.
Article CAS PubMed Google Scholar
Fan Y, Kong H, Ye X, Ding J, Hu G. ATP-sensitive potassium channels: uncovering novel targets for treating depression. Brain Struct Funct. 2016;221:3111–22.
Article CAS PubMed Google Scholar
Yee AG, Lee SM, Hunter MR, Glass M, Freestone PS, Lipski J. Effects of the Parkinsonian toxin MPP+ on electrophysiological properties of nigral dopaminergic neurons. Neurotoxicology. 2014;45:1–11.
Comments (0)