IadecolaC AnratherJ. The immunology of stroke: from mechanisms to translation. Nat Med. 2011;17:796–808.
Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med. 1994;330:613–22.
Article CAS PubMed Google Scholar
Martorell-Riera A, Segarra-Mondejar M, Muñoz JP, Ginet V, Olloquequi J, Pérez-Clausell J, et al. Mfn2 downregulation in excitotoxicity causes mitochondrial dysfunction and delayed neuronal death. EMBO J. 2014;33:2388–407.
Article CAS PubMed PubMed Central Google Scholar
Ganjam GK, Terpolilli NA, Diemert S, Eisenbach I, Hoffmann L, Reuther C, et al. Cylindromatosis mediates neuronal cell death in vitro and in vivo. Cell Death Differ. 2018;25:1394–407.
Article CAS PubMed PubMed Central Google Scholar
Warnatz HJ, Schmidt D, Manke T, Piccini I, Sultan M, Borodina T, et al. The BTB and CNC homology 1 (BACH1) target genes are involved in the oxidative stress response and in control of the cell cycle. J Biol Chem. 2011;286:23521–32.
Article CAS PubMed PubMed Central Google Scholar
Raval CM, Zhong JL, Mitchell SA, Tyrrell RM. The role of Bach1 in ultraviolet A-mediated human heme oxygenase 1 regulation in human skin fibroblasts. Free Radic Biol Med. 2012;52:227–36.
Article CAS PubMed Google Scholar
Sun J, Hoshino H, Takaku K, Nakajima O, Muto A, Suzuki H, et al. Hemoprotein BACH1 regulates enhancer availability of heme oxygenase-1 gene. EMBO J. 2002;21:5216–24.
Article CAS PubMed PubMed Central Google Scholar
Dhakshinamoorthy S, Jain AK, Bloom DA, Jaiswal AK. BACH1 competes with NRF2 leading to negative regulation of the antioxidant response element (ARE)-mediated NAD(P)H: quinone oxidoreductase 1 gene expression and induction in response to antioxidants. J Biol Chem. 2005;280:16891–900.
Article CAS PubMed Google Scholar
Ahuja M, Ammal Kaidery N, Attucks OC, McDade E, Hushpulian DM, Gaisin A, et al. Bach1 derepression is neuroprotective in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA. 2021;118:e2111643118.
Article CAS PubMed PubMed Central Google Scholar
Mito S, Ozono R, Oshima T, Yano Y, Watari Y, Yamamoto Y, et al. Myocardial protection against pressure overload in mice lacking Bach1, a transcriptional repressor of heme oxygenase-1. Hypertension 2008;51:1570–7.
Article CAS PubMed Google Scholar
Casas AI, Geuss E, Kleikers PWM, Mencl S, Herrmann AM, Buendia I, et al. NOX4-dependent neuronal autotoxicity and BBB breakdown explain the superior sensitivity of the brain to ischemic damage. Proc Natl Acad Sci USA. 2017;114:12315–20.
Article CAS PubMed PubMed Central Google Scholar
Chai DD, Zhang L, Xi SW, Cheng YY, Jiang H, Hu R. NRF2 activation induced by sirt1 ameliorates acute lung injury after intestinal ischemia/reperfusion through NOX4-mediated gene regulation. Cell Physiol Biochem. 2018;46:781–92.
Article CAS PubMed Google Scholar
Casares L, Moreno R, Ali KX, Higgins M, Dayalan Naidu S, Neill G, et al. The synthetic triterpenoids CDDO-TFEA and CDDO-Me, but not CDDO, promote nuclear exclusion of BACH1 impairing its activity. Redox Biol. 2022;51:102291.
Article CAS PubMed PubMed Central Google Scholar
Casares L, García V, Garrido-Rodríguez M, Millán E, Collado JA, García-Martín A, et al. Cannabidiol induces antioxidant pathways in keratinocytes by targeting BACH1. Redox Biol. 2020;28:101321.
Article CAS PubMed Google Scholar
Su CY, Shi Q, Song XF, Fu JL, Liu ZX, Wang YW, et al. Tetrachlorobenzoquinone induces Nrf2 activation via rapid Bach1 nuclear export/ubiquitination and JNK-P62 signaling. Toxicology 2016;363-4:48–57.
Suzuki H, Tashiro S, Sun J, Doi H, Satomi S, Igarashi K. Cadmium induces nuclear export of Bach1, a transcriptional repressor of heme oxygenase-1 gene. J Biol Chem. 2003;278:49246–53.
Article CAS PubMed Google Scholar
Suzuki H, Tashiro S, Hira S, Jiying S, Yamazaki C, Zenke Y, et al. Heme regulates gene expression by triggering Crm1-dependent nuclear export of Bach1. EMBO J. 2004;23:2544–53.
Article CAS PubMed PubMed Central Google Scholar
Abazari MF, Nasiri N, Karizi SZ, Nejati F, Haghi-Aminjan H, Norouzi S, et al. An updated review of various medicinal applications of p-coumaric acid: from antioxidative and anti-inflammatory properties to effects on cell cycle and proliferation. Mini Rev Med Chem. 2021;21:2187–201.
Article CAS PubMed Google Scholar
Yu XD, Zhang D, Xiao CL, Zhou Y, Li X, Wang L, et al. p-Coumaric acid reverses depression-like behavior and memory deficit via inhibiting age-rage-mediated neuroinflammation. Cells 2022;11:1594.
Article CAS PubMed PubMed Central Google Scholar
Ueda T, Ito T, Kurita H, Inden M, Hozumi I. p-Coumaric acid has protective effects against mutant copper-zinc superoxide dismutase 1 via the activation of autophagy in N2a cells. Int J Mol Sci. 2019;20:2942.
Article CAS PubMed PubMed Central Google Scholar
Sakamula R, Thong-Asa W. Neuroprotective effect of p-coumaric acid in mice with cerebral ischemia reperfusion injuries. Metab Brain Dis. 2018;33:765–73.
Article CAS PubMed Google Scholar
Shen YB, Song X, Li L, Sun J, Jaiswal Y, Huang JQ, et al. Protective effects of p-coumaric acid against oxidant and hyperlipidemia-an in vitro and in vivo evaluation. Biomed Pharmacother. 2019;111:579–87.
Article CAS PubMed Google Scholar
Menzies SA, Hoff JT, Betz AL. Middle cerebral artery occlusion in rats: a neurological and pathological evaluation of a reproducible model. Neurosurgery 1992;31:100–7.
Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989;20:84–91.
Article CAS PubMed Google Scholar
Chen F, Zhang L, Wang E, Zhang C, Li X. LncRNA GAS5 regulates ischemic stroke as a competing endogenous RNA for miR-137 to regulate the Notch1 signaling pathway. Biochem Biophys Res Commun. 2018;496:184–90.
Article CAS PubMed Google Scholar
Zhang XC, Gu AP, Zheng CY, Li YB, Liang HF, Wang HJ, et al. YY1/LncRNA GAS5 complex aggravates cerebral ischemia/reperfusion injury through enhancing neuronal glycolysis. Neuropharmacology 2019;158:107682.
Article CAS PubMed Google Scholar
Zhu X, Fréchou M, Liere P, Zhang S, Pianos A, Fernandez N, et al. A role of endogenous progesterone in stroke cerebroprotection revealed by the neural-specific deletion of its intracellular receptors. J Neurosci. 2017;37:10998–1020.
Article CAS PubMed PubMed Central Google Scholar
Sirokmány G, Donkó Á, Geiszt M. Nox/Duox family of NADPH oxidases: lessons from knockout mouse models. Trends Pharmacol Sci. 2016;37:318–27.
Kaspar JW, Jaiswal AK. Antioxidant-induced phosphorylation of tyrosine 486 leads to rapid nuclear export of Bach1 that allows Nrf2 to bind to the antioxidant response element and activate defensive gene expression. J Biol Chem. 2010;285:153–62.
Article CAS PubMed Google Scholar
Mahajan K, Coppola D, Challa S, Fang B, Chen YA, Zhu W, et al. Ack1 mediated AKT/PKB tyrosine 176 phosphorylation regulates its activation. PLoS ONE. 2010;5:9646.
Comments (0)