Hansen KB, Yi F, Perszyk RE, Furukawa H, Wollmuth LP, Gibb AJ, et al. Structure, function, and allosteric modulation of NMDA receptors. J Gen Physiol. 2018;150:1081–105.
Article PubMed PubMed Central CAS Google Scholar
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 2010;62:405–96.
Article PubMed PubMed Central CAS Google Scholar
Newcomer JW, Farber NB, Olney JW. NMDA receptor function, memory, and brain aging. Dialogues Clin Neurosci. 2000;2:219–32.
Article PubMed PubMed Central CAS Google Scholar
Grand T, Abi Gerges S, David M, Diana MA, Paoletti P. Unmasking GluN1/GluN3A excitatory glycine NMDA receptors. Nat Commun. 2018;9:4769.
Article PubMed PubMed Central Google Scholar
Galliano E, Schonewille M, Peter S, Rutteman M, Houtman S, Jaarsma D, et al. Impact of NMDA receptor overexpression on cerebellar Purkinje cell activity and motor learning. eNeuro. 2018;5:ENEURO.0270-17.2018.
Karakas E, Furukawa H. Crystal structure ofa heterotetrameric NMDA receptor ion channel. Science. 2014;344:992–7.
Article PubMed PubMed Central CAS Google Scholar
Ma T, Cheng Q, Chen C, Luo Z, Feng D. Excessive activation of NMDA receptors in the pathogenesis of multiple peripheral organs via mitochondrial dysfunction, oxidative stress, and inflammation. SN Compr Clin Med. 2020;2:551–69.
Parsons CG, Danysz W, Quack G. Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist—a review of preclinical data. Neuropharmacology. 1999;38:735–67.
Article PubMed CAS Google Scholar
Chatterton JE, Awobuluyi M, Premkumar LS, Takahashi H, Talantova M, Shin Y, et al. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature. 2002;415:793–8.
Article PubMed CAS Google Scholar
Bossi S, Pizzamiglio L, Paoletti P. Excitatory GluN1/GluN3A glycine receptors (eGlyRs) in brain signaling. Trends Neurosci. 2023;46:667–81.
Article PubMed CAS Google Scholar
Zeng Y, Zheng Y, Zhang T, Ye F, Zhan L, Kou Z, et al. Identification of a subtype-selective allosteric inhibitor of GluN1/GluN3 NMDA receptors. Front Pharmacol. 2022; 13.
Wang W, Gao X. Deep learning in bioinformatics. Methods 2019;166:1–3.
Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18:463–77.
Article PubMed PubMed Central CAS Google Scholar
Lavecchia A. Deep learning in drug discovery: opportunities, challenges and future prospects. Drug Discov Today. 2019;24:2017–32.
Lo YC, Rensi SE, Torng W, Altman RB. Machine learning in chemoinformatics and drug discovery. Drug Discov Today. 2018;23:1538–46.
Article PubMed PubMed Central CAS Google Scholar
Carpenter KA, Cohen DS, Jarrell JT, Huang X. Deep learning and virtual drug screening. Future Med Chem. 2018;10:2557–67.
Article PubMed PubMed Central CAS Google Scholar
Oliveira T, Silva M, Maia E, Silva A, Taranto A. Virtual screening algorithms in drug discovery: a review focused on machine and deep learning methods. Drugs Drug Candidates. 2023;2:311–34.
Koh HY, Nguyen ATN, Pan S, May LT, Webb GI. Physicochemical graph neural network for learning protein–ligand interaction fingerprints from sequence data. Nat Mach Intell. 2024;6:673–87.
Ozturk H, Ozgur A, Ozkirimli E. DeepDTA: deep drug-target binding affinity prediction. Bioinformatics. 2018;34:i821–i9.
Article PubMed PubMed Central CAS Google Scholar
Nguyen T, Le H, Quinn TP, Nguyen T, Le TD, Venkatesh S. GraphDTA: predicting drug-target binding affinity with graph neural networks. Bioinformatics. 2021;37:1140–7.
Article PubMed CAS Google Scholar
Bai P, Miljković F, John B, Lu H. Interpretable bilinear attention network with domain adaptation improves drug–target prediction. Nat Mach Intell. 2023;5:126–36.
Lu W, Wu Q, Zhang J, Rao J, Li C, Zheng S. Tankbind: Trigonometry-aware neural networks for drug-protein binding structure prediction. Adv Neural Inf Process Syst. 2022;35:7236–49.
Zheng L, Fan J, Mu Y. OnionNet: a multiple-layer intermolecular-contact-based convolutional neural network for protein-ligand binding affinity prediction. ACS Omega. 2019;4:15956–65.
Article PubMed PubMed Central CAS Google Scholar
Wang Z, Zheng L, Liu Y, Qu Y, Li YQ, Zhao M, et al. OnionNet-2: A convolutional neural network model for predicting protein-ligand binding affinity based on residue-atom contacting shells. Front Chem. 2021;9:753002.
Article PubMed PubMed Central CAS Google Scholar
Nguyen DD, Wei GW. AGL-score: algebraic graph learning score for protein-ligand binding scoring, ranking, docking, and screening. J Chem Inf Model. 2019;59:3291–304.
Article PubMed PubMed Central CAS Google Scholar
Wang Z, Wang S, Li Y, Guo J, Wei Y, Mu Y, et al. A new paradigm for applying deep learning to protein-ligand interaction prediction. Brief Bioinform. 2024;25:bbae145.
Article PubMed PubMed Central CAS Google Scholar
Wang Z, Zheng L, Wang S, Lin M, Wang Z, Kong AW, et al. A fully differentiable ligand pose optimization framework guided by deep learning and a traditional scoring function. Brief Bioinform. 2023;24:bbac520.
Zheng L, Meng J, Jiang K, Lan H, Wang Z, Lin M, et al. Improving protein-ligand docking and screening accuracies by incorporating a scoring function correction term. Brief Bioinform. 2022;23:bbac051.
Article PubMed PubMed Central Google Scholar
Shen T, Liu F, Wang Z, Sun J, Bu Y, Meng J, et al. zPoseScore model for accurate and robust protein-ligand docking pose scoring in CASP15. Proteins. 2023;91:1837–49.
Article PubMed CAS Google Scholar
Méndez-Lucio O, Ahmad M, del Rio-Chanona EA, Wegner JK. A geometric deep learning approach to predict binding conformations of bioactive molecules. Nat Mach Intell. 2021;3:1033–9.
Shen C, Zhang X, Deng Y, Gao J, Wang D, Xu L, et al. Boosting protein-ligand binding pose prediction and virtual screening based on residue-atom distance likelihood potential and graph transformer. J Med Chem. 2022;65:10691–706.
Article PubMed CAS Google Scholar
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.
Article PubMed PubMed Central CAS Google Scholar
Lin Z, Akin H, Rao R, Hie B, Zhu Z, Lu W, et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science. 2023;379:1123–30.
Article PubMed CAS Google Scholar
Edwards C, Lai T, Ros K, Honke G, Cho K, Ji H. Translation between molecules and natural language. Preprint at
Comments (0)