Gelderman HT, Kruiver CA, Oostra RJ, Zeegers MP, Duijst W. Estimation of the postmortem interval based on the human decomposition process. J Forensic Leg Med. 2019;61:122–7. https://doi.org/10.1016/j.jflm.2018.12.004.
Article CAS PubMed Google Scholar
Kaliszan M, Hauser R, Kernbach-Wighton G. Estimation of the time of death based on the assessment of post mortem processes with emphasis on body cooling. Leg Med (Tokyo, Japan). 2009;11(3):111–7. https://doi.org/10.1016/j.legalmed.2008.12.002.
Madea, B., Kernbach-Wighton, G. Early and Late Postmortem Changes. In: Siegel Jay A., Saukko Pekka J., Houck Max M. editors. Encyclopedia of Forensic Sciences (Second Edition). Academic Press. 2013; pp. 217-228. https://doi.org/10.1016/B978-0-12-382165-2.00187-2
Tattoli L, Tsokos M, Sautter J, Anagnostopoulos J, Maselli E, Ingravallo G, Delia M, Solarino B. Postmortem bone marrow analysis in forensic science: Study of 73 cases and review of the literature. Forensic Sci Int. 2014;234:72–8. https://doi.org/10.1016/j.forsciint.2013.10.040.
McGrath KK, Jenkins AJ. Detection of drugs of forensic importance in postmortem bone. Am J Forensic Med Pathol. 2009;30(1):40–4. https://doi.org/10.1097/PAF.0b013e31818738c9.
Fucci N, Pascali VL, Puccinelli C, Marcheggiani S, Mancini L, Marchetti D. Evaluation of two methods for the use of diatoms in drowning cases. Forensic Sci Med Pathol. 2015;11(4):601–5. https://doi.org/10.1007/s12024-015-9708-2.
Putra SP, Hidayat T, Zhuhra RT. SARS-CoV-2 persistence and infectivity in COVID-19 corpses: A systematic review. Forensic Sci Med Pathol. 2023;19(1):94–102. https://doi.org/10.1007/s12024-022-00518-w.
da Fonseca C, Paltian J, Dos Reis AS, Bortolatto CF, Wilhelm EA, Luchese C. Na+/K+-ATPase, acetylcholinesterase and glutathione S-transferase activities as new markers of postmortem interval in Swiss mice. Leg Med (Tokyo, Japan). 2019;36:67–72. https://doi.org/10.1016/j.legalmed.2018.11.003.
Patrick L. Lead toxicity part II: The role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Altern Med Rev. 2006;11:114–27.
Roll P, Beham A, Beham-Schmid CH. Post-mortem histopathological investigations of the bone marrow in forensic medicine: An important issue for forensic and clinical pathologists. Forensic Sci Int. 2009;186(1–3):e17–20. https://doi.org/10.1016/j.forsciint.2008.12.005.
Article CAS PubMed Google Scholar
Dacie JV, Lewis SM. Practical Haematology. In: Lewis, S.M., Bain, B.J., Bates, I. editors. Practical Heamatology, 9th Edition. Churchill Livingstone, Harcourt Publishers Limited, London. 2001; pp 444-451.
Saydam N, Kirb A, Demir O, Hazan E, Oto O, Saydam O, Güner G. Determination of glutathione, glutathione reductase, glutathione peroxidase, and glutathione S-transferase levels in human lung cancer tissues. Cancer Lett. 1997;119(1):13–9. https://doi.org/10.1016/s0304-3835(97)00245-0.
Article CAS PubMed Google Scholar
Bancroft JD, Gamble M. Theory and practice of histological techniques. Edinburgh Churchill Livingstone. 2002;5(172–5):593–620.
Matson KJE, Sathyamurthy A, Johnson KR, Kelly MC, Kelley MW, Levine AJ. Isolation of adult spinal cord nuclei for massively parallel single-nucleus RNA sequencing. J Vis Exp: JoVE. 2018;140:58413. https://doi.org/10.3791/58413.
Tozzo P, Scrivano S, Sanavio M, Caenazzo L. The role of DNA degradation in the estimation of post-mortem interval: A systematic review of the current literature. Int J Mol Sci. 2020;21(10):3540. https://doi.org/10.3390/ijms21103540.
Article CAS PubMed PubMed Central Google Scholar
Majda A, Wietecha-Posłuszny R, Świądro M, Mrochem K, Kościelniak P. Dried blood spots sampling in case samples deprived of hematocrit level information - Investigation and calculation strategy. J Chromatogr B Biomed Appl. 2019;1124:308–12. https://doi.org/10.1016/j.jchromb.2019.06.025.
Murray J, Agreiter I, Orlando L, Hutt D. BMT Settings, Infection and Infection Control. In: Kenyon, M., Babic, A. editors. The European Blood and Marrow Transplantation Textbook for Nurses. Springer, Cham. 2018. https://doi.org/10.1007/978-3-319-50026-3_7.
Cartiser N, Bévalot F, Fanton L, Gaillard Y, Guitton J. State-of-the-art of bone marrow analysis in forensic toxicology: A review. Int J Legal Med. 2011;125(2):181–98. https://doi.org/10.1007/s00414-010-0525-6.
Thaik-Oo M, Tanaka E, Tsuchiya T, Kominato Y, Honda K, Yamazaki K, Misawa S. Estimation of postmortem interval from hypoxic inducible levels of vascular endothelial growth factor. JFS. 2002;47(1):186–9. https://doi.org/10.1520/JFS15222J.
Donaldson AE, Lamont IL. Biochemistry changes that occur after death: Potential markers for determining post-mortem interval. PLoS ONE. 2013;8(11):e82011. https://doi.org/10.1371/journal.pone.0082011.
Article CAS PubMed PubMed Central Google Scholar
Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: Properties, sources, targets, and their implication in various diseases. IJCB. 2015;30(1):11–26. https://doi.org/10.1007/s12291-014-0446-0.
Article CAS PubMed Google Scholar
Farag, M., Kandeel, N., Attia, N., and Fahmy, N. The Effect of Different Postmortem Intervals on Bone Marrow of Adult Male Albino Rats. [Master Thesis]. 2016; Faculty of Medicine, Zagazig University.
Öztürk C, Sener MT, Sener E, Yilmaz I, Akçay F, Suleyman H. The investigation of damage in the muscle tissue with the oxidant/antioxidant balance and the extent of postmortem DNA damage in rats. Life Sci. 2013;10(3):13–5.
Sener MT, Suleyman H, Hacimuftuoglu A, Polat B, Cetin N, Suleyman B, Akcay F. Estimating the postmortem interval by the difference between oxidant/antioxidant parameters in liver tissue. Adv Clin Exp Med. 2012;21(6):727–33. PMID: 23457129.
Harish G, Venkateshappa C, Mahadevan A, Pruthi N, Bharath MM, Shankar SK. Mitochondrial function in human brains is affected by pre- and post mortem factors. Neuropathol Appl Neurobiol. 2013;39(3):298–315. https://doi.org/10.1111/j.1365-2990.2012.01285.x.
Article CAS PubMed Google Scholar
Abo El-Noor MM, Elhosary NM, Khedr NF, El-Desouky KI. Estimation of early postmortem interval through biochemical and pathological changes in rat heart and kidney. Am J Forensic Med Pathol. 2016;37(1):40–6. https://doi.org/10.1097/PAF.0000000000000214.
Gururaj B, Shankar MB, Kumar GP, Shaila B, Vinod CN. Correlation of cellular autolytic changes in bone marrow with post-mortem interval. IJCBR. 2015;1(4):28–33. Retrieved from https://www.sumathipublications.com/index.php/ijcbr/article/view/89.
Babu S, Biradar G, Bakkannavar S, Kumar PG, Shaila B. Estimation of time since death from nuclei changes of bone marrow cells. IJFCM. 2015;2:198–202. https://doi.org/10.5958/2394-6776.2015.00003.X.
Takahashi S, Takada A, Saito K, Hara M, Yoneyama K, Nakanishi H. Diagnostic significance of the histopathology of bone marrow macrophages in forensic autopsies. Leg Med (Tokyo, Japan). 2022;58:102079. https://doi.org/10.1016/j.legalmed.2022.102079.
Travlos GS. Histopathology of bone marrow. Toxicol Pathol. 2006;34(5):566–98. https://doi.org/10.1080/01926230600964706.
Schmidt VM, Zelger P, Wöss C, Huck CW, Arora R, Bechtel E, Stahl A, Brunner A, Zelger B, Schirmer M, Rabl W, Pallua JD. Post-Mortem interval of human skeletal remains estimated with handheld NIR spectrometry. Biology. 2022;11(7):1020. https://doi.org/10.3390/biology11071020.
Article PubMed PubMed Central Google Scholar
Bonicelli A, Mickleburgh HL, Chighine A, Locci E, Wescott DJ, Procopio N. The “ForensOMICS” approach for postmortem interval estimation from human bone by integrating metabolomics, lipidomics, and proteomics. eLife. 2022;11:e83658. https://doi.org/10.7554/eLife.83658.
Comments (0)