Abdel-Ghany SE, Ullah F, Ben-Hur A, Reddy ASN (2020) Transcriptome analysis of drought-resistant and drought-sensitive sorghum (Sorghum bicolor) genotypes in response to peg-induced drought stress. Int J Mol Sci. https://doi.org/10.3390/ijms21030772
Article PubMed PubMed Central Google Scholar
Abdullah M, Cheng X, Cao Y, Su X, Manzoor MA, Gao J et al (2018) Zinc Finger-Homeodomain Transcriptional Factors (ZHDs) in Upland Cotton (Gossypium hirsutum): genome-wide identification and expression analysis in fiber development. Front Genet. https://doi.org/10.3389/fgene.2018.00357
Article PubMed PubMed Central Google Scholar
Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78. https://doi.org/10.1105/tpc.006130
Article CAS PubMed PubMed Central Google Scholar
Abid G, Saidi MN, Ouertani RN, Muhovski Y, Jebara SH, Ghouili E et al (2021) Differential gene expression reveals candidate genes for osmotic stress response in faba bean (Vicia faba L.) involved in different molecular pathways. Acta Physiol Plant 43:1–20
Abid G, Hessini K, Aouida M, Aroua I, Baudoin J-P, Muhovski Y, et al (2017) Agro-physiological and biochemical responses of faba bean (Vicia faba L. var. ’minor’) genotypes to water deficit stress. Biotechnol Agron Société Environ https://doi.org/10.25518/1780-4507.13579
Ahmadizadeh M, Shahbazi H, Valizadeh M, Zaefizadeh M (2011a) Genetic diversity of durum wheat landraces using multivariate analysis under normal irrigation and drought stress conditions. African J Agric Res 6:2294–2302
Ahmadizadeh M, Valizadeh M, Zaefizadeh M, Shahbazi H (2011b) Antioxidative protection and electrolyte leakage in durum wheat under drought stress condition. J Appl Sci Res 7(3):236–246
Ahmed IM, Nadira UA, Bibi N, Cao F, He X, Zhang G et al (2015) Secondary metabolism and antioxidants are involved in the tolerance to drought and salinity, separately and combined, in Tibetan wild barley. Environ Exp Bot 111:1–12
Ali S, Hayat K, Iqbal A, Xie L (2020) Implications of abscisic acid in the drought stress tolerance of plants. Agronomy. https://doi.org/10.3390/agronomy10091323
Andrews S (2010) FastQC: a quality control tool for high throughput sequence data
Araújo SS, Beebe S, Crespi M, Delbreil B, González EM, Gruber V et al (2015) Abiotic stress responses in legumes: strategies used to cope with environmental challenges. CRC Crit Rev Plant Sci 34:237–280. https://doi.org/10.1080/07352689.2014.898450
Arisha MH, Ahmad MQ, Tang W, Liu Y, Yan H, Kou M et al (2020) RNA-sequencing analysis revealed genes associated drought stress responses of different durations in hexaploid sweet potato. Sci Rep 10:1–17
Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93
Article CAS PubMed Google Scholar
Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006
Bargmann BOR, Munnik T (2006) The role of phospholipase D in plant stress responses. Curr Opin Plant Biol 9:515–522. https://doi.org/10.1016/j.pbi.2006.07.011
Article CAS PubMed Google Scholar
Barth O, Vogt S, Uhlemann R, Zschiesche W, Humbeck K (2009) Stress induced and nuclear localized HIPP26 from Arabidopsis thaliana interacts via its heavy metal associated domain with the drought stress related zinc finger transcription factor ATHB29. Plant Mol Biol 69:213–226. https://doi.org/10.1007/s11103-008-9419-0
Article CAS PubMed Google Scholar
Basu S, Ramegowda V, Kumar A, Pereira A (2016) Plant adaptation to drought stress [version 1; referees: 3 approved]. F1000Research 5:1–10. https://doi.org/10.12688/F1000RESEARCH.7678.1
Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207. https://doi.org/10.1007/BF00018060
Ben Rejeb I, Pastor V, Mauch-Mani B (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants 3:458–475. https://doi.org/10.3390/plants3040458
Article PubMed Central Google Scholar
Besseau S, Li J, Palva ET (2012) WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J Exp Bot 63:2667–2679. https://doi.org/10.1093/jxb/err450
Article CAS PubMed PubMed Central Google Scholar
Bewley JD (1979) Physiological aspects of desiccation tolerance. Available at: www.annualreviews.org
Bhaskarla V, Zinta G, Ford R, Jain M, Varshney RK, Mantri N (2020) Comparative root transcriptomics provide insights into drought adaptation strategies in chickpea (Cicer arietinum L.). Int J Mol Sci. https://doi.org/10.3390/ijms21051781
Article PubMed PubMed Central Google Scholar
Bi H, Kovalchuk N, Langridge P, Tricker PJ, Lopato S, Borisjuk N (2017) The impact of drought on wheat leaf cuticle properties. BMC Plant Biol 17:85. https://doi.org/10.1186/s12870-017-1033-3
Article CAS PubMed PubMed Central Google Scholar
Bohnert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14:89–97. https://doi.org/10.1016/0167-7799(96)80929-2
Bohra A, Mir RR, Jha R, Maurya AK, Varshney RK (2020) Advances in genomics and molecular breeding for legume improvement. In: Advancement in crop improvement. Elsevier, pp 129–139. https://doi.org/10.1016/b978-0-12-818581-0.00009-7
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120
Article CAS PubMed PubMed Central Google Scholar
Cai K, Gao H, Wu X, Zhang S, Han Z, Chen X et al (2019) The ability to regulate transmembrane potassium transport in root is critical for drought tolerance in barley. Int J Mol Sci 20:4111
Article CAS PubMed PubMed Central Google Scholar
Catola S, Marino G, Emiliani G, Huseynova T, Musayev M, Akparov Z et al (2016) Physiological and metabolomic analysis of Punica granatum (L.) under drought stress. Planta 243:441–449. https://doi.org/10.1007/s00425-015-2414-1
Article CAS PubMed Google Scholar
Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384. https://doi.org/10.1093/jxb/erh269
Article CAS PubMed Google Scholar
Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30:239–264
Article CAS PubMed Google Scholar
Chen Y, Chen Y, Shi Z, Jin Y, Sun H, Xie F et al (2019a) Biosynthesis and signal transduction of ABA, JA, and BRs in response to drought stress of Kentucky bluegrass. Int J Mol Sci 20:1289
Article CAS PubMed PubMed Central Google Scholar
Chen Y, Li C, Zhang B, Yi J, Yang Y, Kong C et al (2019b) The role of the Late Embryogenesis-Abundant (LEA) protein family in development and the abiotic stress response: a comprehensive expression analysis of potato (Solanum tuberosum). Genes (basel). https://doi.org/10.3390/genes10020148
Article PubMed PubMed Central Google Scholar
Choudhary AK, Nadarajan N, Choudhary AK, Nadarajan N (2011) Breeding improved cultivars of Pigeonpea in India. Available at: https://www.researchgate.net/publication/309136303.
Collin A, Daszkowska-Golec A, Kurowska M, Szarejko I (2020) Barley ABI5 (abscisic acid INSENSITIVE 5) is involved in abscisic acid-dependent drought response. Plant Sci Front. https://doi.org/10.3389/fpls.2020.01138
Cominelli E, Gusmaroli G, Allegra D, Galbiati M, Wade HK, Jenkins GI et al (2008) Expression analysis of anthocyanin regulatory genes in response to different light qualities in Arabidopsis thaliana. J Plant Physiol 165:886–894. https://doi.org/10.1016/j.jplph.2007.06.010
Article CAS PubMed Google Scholar
Dai Y, Sun X, Wang C, Li F, Zhang S, Zhang H et al (2021) Gene co-expression network analysis reveals key pathways and hub genes in Chinese cabbage (Brassica rapa L.) during vernalization. Genomics. https://doi.org/10.1186/s12864-021-07510-8
Article PubMed PubMed Central Google Scholar
Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53
Davey MW, Stals E, Panis B, Keulemans J, Swennen RL (2005) High-throughput determination of malondialdehyde in plant tissues. Anal Biochem 347:201–207. https://doi.org/10.1016/j.ab.2005.09.041
Article CAS PubMed Google Scholar
de Zelicourt A, Colcombet J, Hirt H (2016) The Role of MAPK modules and ABA during abiotic stress signaling. Trends Plant Sci 21:677–685. https://doi.org/10.1016/j.tplants.2016.04.004
Article CAS PubMed Google Scholar
Deeplanaik N, Kumaran RC, Venkatarangaiah K, Shivashankar SKH, Doddamani D, Telkar S (2013) Expression of drought responsive genes in pigeonpea and in silico comparison with soybean cDNA library. J Crop Sci Biotechnol 16:243–251. https://doi.org/10.1007/s12892-013-0069-7
Comments (0)