Takaoka, M. (1939). Resveratrol, a new phenolic compound, from veratrum grandiflorum. Journal of Chemistry Society. Japan., 60, 1090–1100.
Wang, Y., Catana, F., Yang, Y. N., Roderick, R., & van Breemen, R. B. (2002). An LC-MS method for analyzing total resveratrol in grape juice, cranberry juice, and in wine. Journal of Agricultural and Food Chemistry, 50, 431–435. https://doi.org/10.1021/jf010812u
Article CAS PubMed Google Scholar
Jang, M., Cai, L. N., Udeani, G. O., Slowing, K. V., Thomas, C. F., Beecher, C. W., Fong, H. H. S., Farnsworth, N. R., Kinghorn, A. D., Mehta, R. G., Moon, R. C., & Pezzuto, J. M. (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 275, 218–220. https://doi.org/10.1126/science.275.5297.21
Article CAS PubMed Google Scholar
Cheng, C. K., Luo, J. Y., Lau, C. W., Chen, Z. Y., Tian, X. Y., & Huang, Y. (2020). Pharmacological basis and new insights of resveratrol action in the cardiovascular system. British Journal of Pharmacology, 177, 1258–1277. https://doi.org/10.1111/bph.14801
Article CAS PubMed Google Scholar
Surh, Y. J., Hurh, Y. J., Kang, J. Y., Lee, E., Kong, G., & Lee, S. J. (1999). Resveratrol, an antioxidant present in red wine, induces apoptosis in human promyelocytic leukemia (HL-60) cells. Cancer Letters, 140, 1–10. https://doi.org/10.1016/S0304-3835(99)00039-7
Article CAS PubMed Google Scholar
Asensi, M., Medina, I., Ortega, A., Carretero, J., Baño, M. C., Obrador, E., & Estrela, J. M. (2002). Inhibition of cancer growth by resveratrol is related to its low bioavailability. Free Radical Biology and Medicine, 33, 387–398. https://doi.org/10.1016/S0891-5849(02)00911-5
Article CAS PubMed Google Scholar
Soleas, G. J., Grass, L., Josephy, P. D., Goldberg, D. M., & Diamandis, E. P. (2002). A comparison of the anticarcinogenic properties of four red wine polyphenols. Clinical Biochem, 35, 119–124. https://doi.org/10.1016/S0009-9120(02)00275-8
Singh, A. P., Singh, R., Verma, S. S., Rai, V., Kaschula, C. H., Maiti, P., & Gupta, S. C. (2019). Health benefits of resveratrol: evidence from clinical studies. Medicinal Research Reviews, 39, 1851–1891. https://doi.org/10.1002/med.21565
Article CAS PubMed Google Scholar
Gülçin, I. (2010). Antioxidant properties of resveratrol: A structure–activity insight. Innovative Food Science Emerging Technologies, 11, 210–218. https://doi.org/10.1016/j.ifset.2009.07.002
Orallo, F. (2006). Comparative studies of the antioxidant effects of cis-and trans- resveratrol. Current Medicinal Chemistry, 13, 87–98.
Article CAS PubMed Google Scholar
Thompson, A. J., Hart-Cooper, W. M., Cunniffe, J., Johnson, K., & Orts, W. J. (2021). Safer sunscreens: Investigation of naturally derived UV absorbers for potential use in consumer products. ACS Sustainable Chemistry and Engineering, 9, 9085–9092. https://doi.org/10.1021/acssuschemeng.1c02504
Aziz, M. H., Afaq, F., & Ahmad, N. (2005). Prevention of ultraviolet-B radiation damage by resveratrol in mouse skin is mediated via modulation in survivin. Photochemistry and Photobiology, 81, 25–31. https://doi.org/10.1111/j.1751-1097.2005.tb01518.x
Article CAS PubMed Google Scholar
Freitas, J. V., Lopes, N. P., & Gaspar, L. R. (2015). Photostability evaluation of five UV-filters, trans-resveratrol and beta-carotene in sunscreens. European Journal of Pharmaceutical Sciences, 78, 79–89. https://doi.org/10.1016/j.ejps.2015.07.004
Article CAS PubMed Google Scholar
Rodríguez-Cabo, T., Rodríguez, I., Ramil, M., & Cela, R. (2015). Comprehensive evaluation of the photo-transformation routes of trans-resveratrol. Journal of Chromatography A, 1410, 129–139. https://doi.org/10.1016/j.chroma.2015.07.088
Article CAS PubMed Google Scholar
Wenzel, E., & Somoza, V. (2005). Metabolism and bioavailability of trans-resveratrol. Molecular Nutrition Food Research, 49, 472–481. https://doi.org/10.1002/mnfr.200500010
Article CAS PubMed Google Scholar
Patel, K. R., Scott, E., Brown, V. A., Gescher, A. J., Steward, W. P., & Brown, K. (2011). Clinical trials of resveratrol. Annals of the New York Academy of Sciences, 1215, 161–169. https://doi.org/10.1111/j.1749-6632.2010.05853.x
Article CAS PubMed Google Scholar
Walle, T. (2011). Bioavailability of resveratrol. Annals of the New York Academy of Sciences, 1215, 9–15. https://doi.org/10.1111/j.1749-6632.2010.05842.x
Article CAS PubMed Google Scholar
Callahan, M. P., Gengeliczki, Z., & de Vries, M. S. (2008). Resonant two-photon ionization mass spectrometry of jet-cooled phenolic acids and polyphenols. Analytical Chemistry, 80, 2199–2203. https://doi.org/10.1021/ac7022469
Article CAS PubMed Google Scholar
Simkovitch, R., & Huppert, D. (2015). Excited-state proton transfer in resveratrol and proposed mechanism for plant resistance to fungal infection. The Journal of Physical Chemistry B, 119, 11684–11694. https://doi.org/10.1021/acs.jpcb.5b06440
Article CAS PubMed Google Scholar
Džeba, I., Pedzinski, T., Mihaljevi´c, B., (2015). Photophysical and photochemical properties of resveratrol. Journal of Photochemistry and Photobiology A: Chemistry, 299, 118-124. https://doi.org/10.1016/j.jphotochem.2014.11.019
Shi, Y. N., Zhao, X. Y., Wang, C., Wang, Y., Zhang, S., Li, P., Feng, X., Jin, B., Yuan, M. H., Cui, S., Sun, Y., Zhang, B., Sun, S., Jin, X., Wang, H., & Zhao, G. (2020). Ultrafast nonadiabatic photoisomerization dynamics mechanism for the UV photoprotection of stilbenoids in grape skin. Chemistry An Asian Journal. https://doi.org/10.1002/asia.202000219
Irimia, D., Dobrikov, D., Kortekaas, R., Voet, H., van den Ende, D. A., Groen, W. A., & Janssen, M. H. (2009). A short pulse (7 μs FWHM) and high repetition rate (dc-5kHz) cantilever piezovalve for pulsed atomic and molecular beams. Review of Scientific Instruments, 80(11). https://doi.org/10.1063/1.3263912
Suhina, T., Weber, B., Carpentier, C. E., Lorincz, K., Schall, P., Bonn, D., & Brouwer, A. M. (2015). Fluorescence microscopy visualization of contacts between objects. Angewandte Chemie International Edition, 127, 3759–3762. https://doi.org/10.1002/anie.201410240
Chai, J. D., & Head-Gordon, M. (2008). Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Physical Chemistry Chemical Physics, 10, 6615–6620. https://doi.org/10.1039/B810189B
Article CAS PubMed Google Scholar
M. J. Frisch et al. Gaussian16. Revision C. 01. Gaussian Inc., Wallingford, CT, USA, 2016.
Syage, J. A., Felker, P. M., & Zewail, A. H. (1984). Picosecond dynamics and photoisomerization of stilbene in supersonic beams. I. Spectra and mode assignments. The Journal of Chemical Physics, 81, 4685–4705. https://doi.org/10.1063/1.447519
Renge, I. (2000). Mechanisms of solvent shifts, pressure shifts, and inhomogeneous broadening of the optical spectra of dyes in liquids and low-temperature glasses. The Journal of Physical Chemistry A, 104, 7452–7463. https://doi.org/10.1021/jp000176n
Chiang, W. Y., & Laane, J. (1994). Fluorescence spectra and torsional potential functions for trans-stilbene in its S0 and S1(, *) electronic states. The Journal of Chemical Physics, 100, 8755–8767. https://doi.org/10.1021/j100031a006
Orlandi, G., Garavelli, M., & Zerbetto, F. (2017). Analysis of the vibronic structure of the trans-stilbene fluorescence and excitation spectra: The S0 and S1 PES along the Ce=Ce and Ce-Cph torsions. Physical Chemistry Chemical Physics, 19, 25095–25104. https://doi.org/10.1039/C7CP01594A
Article CAS PubMed Google Scholar
Sur, A., Johnson, P.M., (1986). Radiationless transitions in gas phase phenol and the effects of hydrogen bonding. The Journal of Chemical Physics, 84, 1206–1209 (1986). https://doi.org/10.1063/1.450512
Lipert, R.J., Bermudez, G., Colson, S.D. (1988). Pathways of S1 decay in phenol, indoles, and water complexes of phenol and indole in a free jet expansion The Journal of Physical Chemistry, 92, 3801–3805. https://doi.org/10.1021/j100324a024
Lipert, R. J., & Colson, S. D. (1990). Time-resolved pump-probe photoionization study of excited-state dynamics of phenol-(H20)2 and Phenol-(H20)3. The Journal of Physical Chemistry, 94, 2358–2361. https://doi.org/10.1021/j100369a031
Fan, J., Roeterdink, W., Buma, W. J. (2021). Excited-state dynamics of isolated and (micro) solvated methyl sinapate: The bright and shady sides of a natural sunscreen. Molecular Physics, 119, e1825850. https://doi.org/10.1080/00268976.2020.1825850
Yang, I., Kim, E., Kang, J., Han, H., Sul, S., Park, S. B., & Kim, S. K. (2012). Photochemical generation of a new, highly fluorescent compound from non-fluorescent resveratrol. Chemical Communications, 48, 3839–3841. https://doi.org/10.1039/C2CC30940H
Article CAS PubMed Google Scholar
Vink, M. J. A., Schermer, J. J., Martens, J., Buma, W. J., Berden, G., & Oomens, J. (2023). Characterization of solar radiation-induced degradation products of the plant sunscreen sinapoyl malate. ACS Agricultural Science & Technology, 3, 171–180. https://doi.org/10.1021/acsagscitech.2c00279
Comments (0)