Abbaspour N, Hurrell R, Kelishadi R (2014) Review on iron and its importance for human health. J Res Med Sci 19(2):164–174
PubMed PubMed Central Google Scholar
Amaral MN, Arge LWP, Benitez LC, Danielowski R, Silveira SFDS, Farias DDR, De Oliveira AC, Da Maia LC, Braga EJB (2016) Comparative transcriptomics of rice plants under cold, iron, and salt stresses. Funct Integr Genomics 16:567–579. https://doi.org/10.1007/s10142-016-0507-y
Article CAS PubMed Google Scholar
Bashir K, Hanada K, Shimizu M, Seki M, Nakanishi H, Nishizawa NK (2014) Transcriptomic analysis of rice in response to iron deficiency and excess. Rice (n Y) 7:18. https://doi.org/10.1186/s12284-014-0018-1
Briguglio M, Hrelia S, Malaguti M, Lombardi G, Riso P, Porrini M, Perazzo P, Banfi G (2020) The central role of iron in human nutrition: from folk to contemporary medicine. Nutrients 12:1761. https://doi.org/10.3390/nu12061761
Article CAS PubMed PubMed Central Google Scholar
Che J, Yamaji N, Ma JF (2021) Role of a vacuolar iron transporter OsVIT2 in the distribution of iron to rice grains. New Phytol 230:1049–1062. https://doi.org/10.1111/nph.17219
Article CAS PubMed Google Scholar
Connolly EL, Guerinot M (2002) Iron stress in plants. Genome Biol Rev 1024(1021–1024):1024. https://doi.org/10.1186/gb-2002-3-8-reviews1024
Connorton JM, Balk J, Rodríguez-Celma J (2017) Iron homeostasis in plants–a brief overview. Metallomics 9:813–823
Article CAS PubMed Google Scholar
Finatto T, De Oliveira AC, Chaparro C, Da Maia LC, Farias DR, Woyann LG, Mistura CC, Soares-Bresolin AP, Llauro C, Panaud O, Picault N (2015) Abiotic stress and genome dynamics: specific genes and transposable elements response to iron excess in rice. Rice 8:13. https://doi.org/10.1186/s12284-015-0045-6
Article PubMed PubMed Central Google Scholar
Gao F, Dubos C (2021) Transcriptional integration of plant responses to iron availability. J Exp Bot 72(6):2056–2070
Article CAS PubMed Google Scholar
Gao F, Robe K, Gaymard F, Izquierdo E, Dubos C (2019) The transcriptional control of iron homeostasis in plants: a tale of bHLH transcription factors? Front Plant Sci 10:6
Article PubMed PubMed Central Google Scholar
Gollhofer J, Schläwicke C, Jungnick N, Schmidt W, Buckhout TJ (2011) Members of a small family of nodulin-like genes are regulated under iron deficiency in roots of Arabidopsis thaliana. Plant Physiol Biochem 49:557–564. https://doi.org/10.1016/j.plaphy.2011.02.011
Article CAS PubMed Google Scholar
Gollhofer J, Timofeev R, Lan P, Schmidt W, Buckhout TJ (2014) Vacuolar-Iron-Transporter1-Like proteins mediate iron homeostasis in Arabidopsis. PLoS ONE 9:e110468. https://doi.org/10.1371/journal.pone.0110468
Article CAS PubMed PubMed Central Google Scholar
Kar S, Mai HJ, Khalouf H, Ben Abdallah H, Flachbart S, Fink-Straube C, Bräutigam A, Xiong G, Shang L, Panda SK, Bauer P (2021) Comparative transcriptomics of lowland rice varieties uncovers novel candidate genes for adaptive iron excess tolerance. Plant Cell Physiol 62:624–640. https://doi.org/10.1093/pcp/pcab018
Article CAS PubMed PubMed Central Google Scholar
Kim SA, Punshon T, Lanzirotti A, Li L, Alonso JM, Ecker JR, Kaplan J, Guerinot ML (2006) Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314:1295–1298
Article CAS PubMed Google Scholar
Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152. https://doi.org/10.1146/annurev-arplant-042811-105522
Article CAS PubMed Google Scholar
Kobayashi T, Nakanishi H, Nishizawa NK (2010) Recent insights into iron homeostasis and their application in graminaceous crops. Proc Jpn Acad Ser B Phys Biol Sci 86:900–913. https://doi.org/10.2183/pjab.86.900
Article CAS PubMed PubMed Central Google Scholar
Kong D, Khan SA, Wu H, Li Y, Ling H-Q (2022) Biofortification of iron and zinc in rice and wheat. J Integr Plant Biol 64(6):1157–11167. https://doi.org/10.1111/jipb.13262
Article CAS PubMed Google Scholar
Li Q, Chen L, Yang A (2019) The molecular mechanisms underlying iron deficiency responses in rice. Int J Mol Sci 21(1):43. https://doi.org/10.3390/ijms21010043
Liu T, Zeng J, Xia K, Fan T, Li Y, Wang Y, Xu X, Zhang M (2012) Evolutionary expansion and functional diversification of oligopeptide transporter gene family in rice. Rice (n Y) 5:12. https://doi.org/10.1186/1939-8433-5-12
Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods (san Diego, Calif) 25:402–408. https://doi.org/10.1006/meth.2001.1262
Article CAS PubMed Google Scholar
Mirdar Mansuri R, Shobbar Z-S, Babaeian Jelodar N, Ghaffari M, Mohammadi SM, Daryani P (2020) Salt tolerance involved candidate genes in rice: an integrative meta-analysis approach. BMC Plant Biol 20:452. https://doi.org/10.1186/s12870-020-02679-8
Article CAS PubMed PubMed Central Google Scholar
Parker JL, Li C, Brinth A, Wang Z, Vogeley L, Solcan N, Ledderboge-Vucinic G, Swanson JMJ, Caffrey M, Voth GA, Newstead S (2017) Proton movement and coupling in the POT family of peptide transporters. Proc Natl Acad Sci U S A 114:13182–13187. https://doi.org/10.1073/pnas.1710727114
Article CAS PubMed PubMed Central Google Scholar
Polko JK, Potter KC, Burr CA, Schaller GE, Kieber JJ (2021) Meta-analysis of transcriptomic studies of cytokinin-treated rice roots defines a core set of cytokinin response genes. Plant J 107:1387–1402. https://doi.org/10.1111/tpj.15386
Article CAS PubMed Google Scholar
Ram H, Kaur A, Gandass N, Singh S, Deshmukh R, Sonah H, Sharma TR (2019) Molecular characterization and expression dynamics of MTP genes under various spatio-temporal stages and metal stress conditions in rice. PLoS ONE 14:e0217360. https://doi.org/10.1371/journal.pone.0217360
Article CAS PubMed PubMed Central Google Scholar
Ram H, Singh A, Katoch M, Kaur R, Sardar S, Palia S, Satyam R, Sonah H, Deshmukh R, Pandey AK, Gupta I, Sharma TR (2021a) Dissecting the nutrient partitioning mechanism in rice grain using spatially resolved gene expression profiling. J Exp Bot 72:2212–2230. https://doi.org/10.1093/jxb/eraa536
Article CAS PubMed Google Scholar
Ram H, Sardar S, Gandass N (2021b) Vacuolar iron transporter (Like) proteins: regulators of cellular iron accumulation in plants. Physiol Plant 171:823–832. https://doi.org/10.1111/ppl.13363
Article CAS PubMed Google Scholar
Riaz N, Guerinot ML (2021) All together now: regulation of the iron deficiency response. J Exp Bot 72(6):2045–2055
Article CAS PubMed PubMed Central Google Scholar
Shekhawat PK, Ram H, Soni P (2023) The regulatory circuit of iron homeostasis in rice: a tale of transcription factors. In: Plant Transcription Factors (pp 251–268). Academic Press
Soni P, Shivhare R, Kaur A, Bansal S, Sonah H, Deshmukh R, Giri J, Lata C, Ram H (2021) Reference gene identification for gene expression analysis in rice under different metal stress. J Biotechnol 332:83–93. https://doi.org/10.1016/j.jbiotec.2021.03.019
Article CAS PubMed Google Scholar
Stein RJ, Duarte GL, Scheunemann L, Spohr MG, de Araújo Júnior AT, Ricachenevsky FK, Rosa LMG, Zanchin NIT, Dos Santos RP, Fett JP (2019) Genotype variation in rice (Oryza sativa L.) Tolerance to Fe toxicity might be linked to root cell wall lignification. Front Plant Sci 10:746. https://doi.org/10.3389/fpls.2019.00746
Article PubMed PubMed Central Google Scholar
Tamura K, Bono H (2022) Meta-analysis of RNA sequencing data of Arabidopsis and rice under hypoxia. Life (basel) 12:1079. https://doi.org/10.3390/life12071079
Article CAS PubMed Google Scholar
Wairich A, de Oliveira BHN, Arend EB, Duarte GL, Ponte LR, Sperotto RA, Ricachenevsky FK, Fett JP (2019) The combined strategy for iron uptake is not exclusive to domesticated rice (Oryza sativa). Sci Rep 9:16144. https://doi.org/10.1038/s41598-019-52502-0
Article CAS PubMed PubMed Central Google Scholar
Wang S, Li L, Ying Y, Wang J, Shao JF, Yamaji N, Whelan J, Ma JF, Shou H (2020) A transcription factor OsbHLH156 regulates Strategy II iron acquisition through localising IRO2 to the nucleus in rice. New Phytol 225:1247–1260. https://doi.org/10.1111/nph.16232
Article CAS PubMed Google Scholar
Wang Y, Li T, Sun Z, Huang X, Yu N, Tai H, Yang Q (2022) Comparative transcriptome meta-analysis reveals a set of genes involved in the responses to multiple pathogens in maize. Front Plant Sci 13:971371. https://doi.org/10.3389/fpls.2022.971371
Article PubMed PubMed Central Google Scholar
Wang S, Sun S, Guo R, Liao W, Shou H (2021) Transcriptomic profiling of Fe-responsive lncRNAs and their regulatory mechanism in rice. Genes 12(4):567.
Comments (0)