Activation of mechanoluminescent nanotransducers by focused ultrasound enables light delivery to deep-seated tissue in vivo

Prominski, A. et al. Porosity-based heterojunctions enable leadless optoelectronic modulation of tissues. Nat. Mater. 21, 647–655 (2022).

Article  CAS  PubMed  Google Scholar 

Tian, B. Nongenetic neural control with light. Science 365, 457 (2019).

Article  CAS  PubMed  Google Scholar 

Xu, C. et al. Nanoparticles with ultrasound-induced afterglow luminescence for tumour-specific theranostics. Nat. Biomed. Eng. 7, 298–312 (2023).

Article  CAS  PubMed  Google Scholar 

Sebesta, C. et al. Subsecond multichannel magnetic control of select neural circuits in freely moving flies. Nat. Mater. 21, 951–958 (2022).

Article  CAS  PubMed  Google Scholar 

Chen, J. C. et al. A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves. Nat. Biomed. Eng. 6, 706–716 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Jiang, S. et al. Spatially expandable fiber-based probes as a multifunctional deep brain interface. Nat. Commun. 11, 6115 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yun, S. H. & Kwok, S. J. J. Light in diagnosis, therapy and surgery. Nat. Biomed. Eng. 1, 0008 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang, S., Wu, X., Rommelfanger, N. J., Ou, Z. & Hong, G. Shedding light on neurons: optical approaches for neuromodulation. Natl Sci. Rev. 9, nwac007 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hong, G., Antaris, A. L. & Dai, H. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1, 0010 (2017).

Article  CAS  Google Scholar 

Zhang, F. et al. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat. Protoc. 5, 439–456 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, P. et al. In vivo wide-area cellular imaging by side-view endomicroscopy. Nat. Methods 7, 303–305 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keahey, P., Ramalingam, P., Schmeler, K. & Richards-Kortum, R. R. Differential structured illumination microendoscopy for in vivo imaging of molecular contrast agents. Proc. Natl Acad. Sci. USA 113, 10769–10773 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, Y. et al. Preparation and use of wireless reprogrammable multilateral optogenetic devices for behavioral neuroscience. Nat. Protoc. 17, 1073–1096 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ausra, J. et al. Wireless, battery-free, subdermally implantable platforms for transcranial and long-range optogenetics in freely moving animals. Proc. Natl Acad. Sci. USA 118, e2025775118 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Montgomery, K. L. et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat. Methods 12, 969–974 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, S. et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 359, 679–684 (2018).

Article  CAS  PubMed  Google Scholar 

Wu, X. et al. Tether-free photothermal deep-brain stimulation in freely behaving mice via wide-field illumination in the near-infrared-II window. Nat. Biomed. Eng. 6, 754–770 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruan, H. et al. Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light. Sci. Adv. 3, eaao5520 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Hong, G. Seeing the sound. Science 369, 638 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, X. et al. Sono-optogenetics facilitated by a circulation-delivered rechargeable light source for minimally invasive optogenetics. Proc. Natl Acad. Sci. USA 116, 26332–26342 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, W. et al. Ultrasound-triggered in situ photon emission for noninvasive optogenetics. J. Am. Chem. Soc. 145, 1097–1107 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, F. et al. Palette of rechargeable mechanoluminescent fluids produced by a biomineral-inspired suppressed dissolution approach. J. Am. Chem. Soc. 144, 18406–18418 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, F. et al. A biomineral-inspired approach of synthesizing colloidal persistent phosphors as a multicolor, intravital light source. Sci. Adv. 8, eabo6743 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, F. et al. Principles and applications of sono-optogenetics. Adv. Drug Deliv. Rev. 194, 114711 (2023).

Article  CAS  PubMed  Google Scholar 

Zhou, X. X. et al. A single-chain photoswitchable CRISPR-Cas9 architecture for light-inducible gene editing and transcription. ACS Chem. Biol. 13, 443–448 (2018).

Article  CAS  PubMed  Google Scholar 

Li, X., Lovell, J. F., Yoon, J. & Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 17, 657–674 (2020).

Article  PubMed  Google Scholar 

Kim, T.-I. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salatino, J. W., Ludwig, K. A., Kozai, T. D. Y. & Purcell, E. K. Glial responses to implanted electrodes in the brain. Nat. Biomed. Eng. 1, 862–877 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shahriari, D., Rosenfeld, D. & Anikeeva, P. Emerging frontier of peripheral nerve and organ interfaces. Neuron 108, 270–285 (2020).

Article  CAS  PubMed  Google Scholar 

Hibberd, T. J. et al. Optogenetic induction of colonic motility in mice. Gastroenterology 155, 514–528.e6 (2018).

Article  PubMed  Google Scholar 

Xian, Q. et al. Modulation of deep neural circuits with sonogenetics. Proc. Natl Acad. Sci. USA 120, e2220575120 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Airan, R. D. & Butts Pauly, K. Hearing out ultrasound neuromodulation. Neuron 98, 875–877 (2018).

Article  CAS  PubMed  Google Scholar 

Sato, T., Shapiro, M. G. & Tsao, D. Y. Ultrasonic neuromodulation causes widespread cortical activation via an indirect auditory mechanism. Neuron 98, 1031–1041.e5 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo, H. et al. Ultrasound produces extensive brain activation via a cochlear pathway. Neuron 98, 1020–1030.e4 (2018).

Article  CAS  PubMed  Google Scholar 

Mohammadjavadi, M. et al. Elimination of peripheral auditory pathway activation does not affect motor responses from ultrasound neuromodulation. Brain Stimul. 12, 901–910 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Ye, P. P., Brown, J. R. & Pauly, K. B. Frequency dependence of ultrasound neurostimulation in the mouse brain. Ultrasound Med. Biol. 42, 1512–1530 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Yang, J.-M. et al. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo. Nat. Med. 18, 1297–1302 (2012).

Comments (0)

No login
gif