Gale, P. A., & Caltagirone, C. (2015). Anion sensing by small molecules and molecular ensembles. Chemical Society Reviews, 44, 4212–4227. https://doi.org/10.1039/C4CS00179F
Article CAS PubMed Google Scholar
Babkin, V., Fedunov, R., Minsker, K., et al. (2001). About the correlative dependence of parameters of combustion of reactive fuels with an electronic charge on fluorine atom of fluorine-containing oxidizers, MNDO method. Oxidation Communications, 24, 1–15.
Rault, G., Adam, J. L., Smektala, F., & Lucas, J. (2001). Fluoride glass compositions for waveguide applications. Journal of Fluorine Chemistry, 110, 165–173. https://doi.org/10.1016/S0022-1139(01)00425-0
Ezhov, V. K. (2013). Methods of extracting a small quantity of impurities during rectification of uranium hexafluoride in fluoride gas reprocessing of spent nuclear fuel. Atomic Energy, 114, 177–182. https://doi.org/10.1007/s10512-013-9692-0
Zhang, B., Xiong, J., Chen, L., et al. (2020). Fundamental physicochemical properties of SF6-alternative gases: a review of recent progress. Journal of Physics D: Applied Physics, 53, 173001. https://doi.org/10.1088/1361-6463/ab6ea1
Kleerekoper, M. (1998). The role of fluoride in the prevention of osteoporosis. Endocrinology and Metabolism Clinics of North America, 27, 441–452. https://doi.org/10.1016/s0889-8529(05)70015-3
Article CAS PubMed Google Scholar
Briançon, D. (1997). Fluoride and osteoporosis: An overview. Revue du Rhumatisme English Edition, 64, 78–81.
Matsuo, S., Kiyomiya, K., & Kurebe, M. (1998). Mechanism of toxic action of fluoride in dental fluorosis: Whether trimeric G proteins participate in the disturbance of intracellular transport of secretory ameloblast exposed to fluoride. Archives of Toxicology, 72, 798–806. https://doi.org/10.1007/s002040050576
Article CAS PubMed Google Scholar
Evans, N. H., & Beer, P. D. (2014). Advances in anion supramolecular chemistry: From recognition to chemical applications. Angewandte Chemie International Edition, 53, 11716–11754. https://doi.org/10.1002/anie.201309937
Article CAS PubMed Google Scholar
Langton, M. J., Serpell, C. J., & Beer, P. D. (2016). Anion recognition in water: Recent advances from a supramolecular and macromolecular perspective. Angewandte Chemie International Edition, 55, 1974–1987. https://doi.org/10.1002/anie.201506589
Article CAS PubMed Google Scholar
Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy. Springer.
Dhillon, A., Nair, M., & Kumar, D. (2016). Analytical methods for determination and sensing of fluoride in biotic and abiotic sources: A review. Analytical Methods, 8, 5338–5352. https://doi.org/10.1039/C6AY01534D
Jali, B.R., & Baruah, J.B. (2021). Recent progress in Schiff bases in detections of fluoride ions. Dyes and Pigments, 194, 109575. https://doi.org/10.1016/j.dyepig.2021.109575
Zhang, M., Liang, R., Li, K., et al. (2022). Dual-emitting metal-organic frameworks for ratiometric fluorescence detection of fluoride and Al3+ in sequence. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 271, 120896. https://doi.org/10.1016/j.saa.2022.120896
Yan X, Li Y-P, Lei J, et al (2021) Introduction of continuous excited-state intermolecular proton transfer process into open yttrium-terephthalate framework for ratiometric fluorescent fluorion detection. Journal of Solid State Chemistry, 300, 122212. https://doi.org/10.1016/j.jssc.2021.122212
Chen, B., Jiang, T., Fu, H., et al. (2021). Ultrasensitive, rapid and selective sensing of hazardous fluoride ion in aqueous solution using a zirconium porphyrinic luminescent metal-organic framework. Analytica Chimica Acta, 1145, 95–102. https://doi.org/10.1016/j.aca.2020.11.007
Article CAS PubMed Google Scholar
Wang, H. (2021). Fluoride ion-induced gas sensor based on the dipyrromethene boron difluoride derivative: A theoretical investigation. Journal of Physical Organic Chemistry, 34, e4265. https://doi.org/10.1002/poc.4265
Chen, X., Liu, Y.-C., Bai, J., et al. (2021). A “turn-on” fluorescent probe based on BODIPY dyes for highly selective detection of fluoride ions. Dyes and Pigments, 190, 109347. https://doi.org/10.1016/j.dyepig.2021.109347
Wang, J., Zong, Q., Wu, Q., et al. (2015). Synthesis and photo-property of 2-cyano boron-dipyrromethene and the application for detecting fluoride ion. Tetrahedron, 71, 9611–9616. https://doi.org/10.1016/j.tet.2015.10.081
Chen, X., Shao, H., Zhu, T., et al. (2022). A new fluoride chemodosimeter based on 3-ether-substituted 1, 8-naphthalimide derivatives. Journal of Fluorescence, 32, 921–926. https://doi.org/10.1007/s10895-021-02871-5
Article CAS PubMed Google Scholar
Zhang, S., Gu, Y., Shi, Z., et al. (2021). A novel reversible fluorescent probe based on naphthalimide for sequential detection of aluminum (Al3+) and fluoride (F−) ions and its applications. Analytical Methods, 13, 5360–5368. https://doi.org/10.1039/D1AY01545A
Article CAS PubMed Google Scholar
Kongwutthivech, J., Tuntulani, T., Promarak, V., & Tomapatanaget, B. (2020). Dual naked-eye optical sensor based on imidazolium cation and napthalamide for specific detection of fluoride. Journal of Fluorescence, 30, 259–267. https://doi.org/10.1007/s10895-020-02494-2
Article CAS PubMed Google Scholar
Upadhyay, K. K., Mishra, R. K., Kumar, V., & Chowdhury, P. K. R. (2010). A coumarin based ICT probe for fluoride in aqueous medium with its real application. Talanta, 82, 312–318. https://doi.org/10.1016/j.talanta.2010.04.041
Article CAS PubMed Google Scholar
Xiong, S., Nanda Kishore, M.V., Zhou, W., & He, Q. (2022). Recent advances in selective recognition of fluoride with macrocyclic receptors. Coordination Chemistry Reviews, 461, 214480. https://doi.org/10.1016/j.ccr.2022.214480
Zhang, Z., Kim, D. S., Lin, C.-Y., et al. (2015). Expanded porphyrin-anion supramolecular assemblies: environmentally responsive sensors for organic solvents and anions. Journal of the American Chemical Society, 137, 7769–7774. https://doi.org/10.1021/jacs.5b03131
Article CAS PubMed Google Scholar
Dalapati, S., Jana, S., & Guchhait, N. (2014). Anion recognition by simple chromogenic and chromo-fluorogenic salicylidene Schiff base or reduced-Schiff base receptors. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 129, 499–508. https://doi.org/10.1016/j.saa.2014.03.090
Article CAS PubMed Google Scholar
Ünver, H., Boyacioglu, B., Demir, N., et al. (2020). A Schiff base colorimetric probe for real-time naked-eye detection of biologically important fluoride and cyanide ions: Single crystal, experimental, theoretical, biological and antioxidant studies. Journal of Molecular Structure, 1221, 128663. https://doi.org/10.1016/j.molstruc.2020.128663
Borah, N., De, S., Gogoi, A., & Das, G. (2020). A series of benzothiazole-based Schiff bases for the colorimetric sensing of fluoride and acetate ions: Acetate-induced turn-on fluorescence for selectivity. New Journal of Chemistry, 44, 18703–18713. https://doi.org/10.1039/D0NJ03516E
Nakwanich, B., Koonwong, A., Suramitr, A., et al. (2021). Spectroscopy and a theoretical study of colorimetric sensing of fluoride ions by salicylidene based Schiff base derivatives. Journal of Molecular Structure, 1245, 131132. https://doi.org/10.1016/j.molstruc.2021.131132
Gauthama, B.U., Narayana, B., Sarojini, B.K., et al. (2020). Colorimetric ‘naked eye’ sensor for fluoride ion based on isatin hydrazones via hydrogen bond formation: Design, synthesis and characterization ascertained by nuclear magnetic resonance, ultraviolet–visible, computational and electrochemical studies. Inorganic Chemistry Communications, 121, 108216. https://doi.org/10.1016/j.inoche.2020.108216
Berhanu, A. L., Gaurav, M. I., et al. (2019). A review of the applications of Schiff bases as optical chemical sensors. TrAC Trends in Analytical Chemistry, 116, 74–91. https://doi.org/10.1016/j.trac.2019.04.025
Wan, H., Xu, Q., Gu, P., et al. (2021). AIE-based fluorescent sensors for low concentration toxic ion detection in water. Journal of Hazardous Materials, 403, 123656. https://doi.org/10.1016/j.jhazmat.2020.123656
Krishnaveni, K., Gurusamy, S., Rajakumar, K., et al. (2022). Aggregation induced emission (AIE), selective fluoride ion sensing and lysozyme interaction properties of Julolidinesulphonyl derived Schiff base. Journal of Photochemistry and Photobiology A: Chemistry, 427, 113822. https://doi.org/10.1016/j.jphotochem.2022.113822
AnbuDurai, W., & Ramu, A. (2020). Hydrazone based dual—responsive colorimetric and ratiometric chemosensor for the detection of Cu2+/F− ions: DNA tracking, practical performance in environmental samples and tooth paste. Journal of Fluorescence, 30, 275–289. https://doi.org/10.1007/s10895-020-02488-0
Saini, N., Wannasiri, C., Chanmungkalakul, S., et al. (2019). Furan/thiophene-based fluorescent hydrazones as fluoride and cyanide sensors. Journal of Photochemistry and Photobiology A: Chemistry, 385, 112038. https://doi.org/10.1016/j.jphotochem.2019.112038
Mondal, A., & Banerjee, P. (2021). Chromofluorogenic sensory probe for ppb level recognition of hazardous F−: Proposition towards Hg2+ mediated logic gate simulator. Journal of Fluorine Chemistry, 246, 109783. https://doi.org/10.1016/j.jfluchem.2021.109783
Mondal, A., Hazra, A., Chakrabarty, J., et al. (2020). A harmonized applied and theoretical exploration for nanomolar level recognition of perilous F− and CN− by multichannel chemosensor: proposition of Hg2+-mediated logic gate imitator. ChemistrySelect, 5, 11976–11985. https://doi.org/10.1002/slct.202002964
Sharma, D., Sahoo, S. K., Chaudhary, S., et al. (2013). Fluorescence ‘turn-on’ sensor for F− derived from vitamin B6 cofactor. The Analyst, 138, 3646–3650. https://doi.org/10.1039/C3AN00199G
Article CAS PubMed Google Scholar
Sharma, D., Ashok Kumar, S. K., & Sahoo, S. K. (2014). Vitamin B6 cofactor derived chemosensor for the selective colorimetric detection of acetate anions. Tetrahedron Letters, 55, 927–930. https://doi.org/10.1016/j.tetlet.2013.12.051
Sharma, D., Moirangthem, A., Roy, S. M., et al. (2015). Bioimaging application of a novel anion selective chemosensor derived from vitamin B6 cofactor. Journal of Photochemistry and Photobiology B: Biology, 148, 37–42. https://doi.org/10.1016/j.jphotobiol.2015.03.021
Article CAS PubMed Google Scholar
Anand, T., Kumar, S. K. A., & Sahoo, S. K. (2017). Vitamin B6 cofactor derivative: A dual fluorescent turn-on sensor to detect Zn2+ and CN− ions and its application in live cell imaging. ChemistrySelect, 2, 7570–7579. https://doi.org/10.1002/slct.201701024
Li, X., Wen, Q., Gu, J., et al. (2020). Diverse reactivity to hypochlorite and copper ions based on a novel Schiff base derived from vitamin B6 cofactor. Journal of Molecular Liquids, 319, 114124. https://doi.org/10.1016/j.molliq.2020.114124
Sahoo, S. K. (2021). Chromo-fluorogenic sensing using vitamin B6 cofactors and their derivatives: A review. New Journal of Chemistry, 45, 8874–8897. https://doi.org/10.1039/D1NJ01008E
Upadhyay, Y., Paira, P., Ashok Kumar, S. K., et al. (2019). Vitamin B6 cofactor conjugated rhodamine 6G derivative: Fluorescent turn-on sensing of Al(III) and Cr(III) with bioimaging application in live HeLa cells. Inorganica Chimica Acta, 489, 198–203. https://doi.org/10.1016/j.ica.2019.02.028
Bothra, S., Babu, L. T., Paira, P., et al. (2018). A biomimetic approach to conjugate vitamin B6 cofactor with the lysozyme cocooned fluorescent AuNCs and its application in turn-on sensing of zinc(II) in environmental and biological samples. Analytical and Bioanalytical Chemistry, 410, 201–210. https://doi.org/10.1007/s00216-017-0710-2
Article CAS PubMed Google Scholar
Zavalishin, M. N., Gamov, G. A., Pimenov, O.A., et al. (2022). Pyridoxal 5′-phosphate 2-methyl-3-furoylhydrazone as a selective sensor for Zn2+ ions in water and drug samples. Journal of Photoche
Comments (0)