Vitamin B6-based fluorescence chemosensor for selective detection of F− ions: design, synthesis, and characterization

Gale, P. A., & Caltagirone, C. (2015). Anion sensing by small molecules and molecular ensembles. Chemical Society Reviews, 44, 4212–4227. https://doi.org/10.1039/C4CS00179F

Article  CAS  PubMed  Google Scholar 

Babkin, V., Fedunov, R., Minsker, K., et al. (2001). About the correlative dependence of parameters of combustion of reactive fuels with an electronic charge on fluorine atom of fluorine-containing oxidizers, MNDO method. Oxidation Communications, 24, 1–15.

CAS  Google Scholar 

Rault, G., Adam, J. L., Smektala, F., & Lucas, J. (2001). Fluoride glass compositions for waveguide applications. Journal of Fluorine Chemistry, 110, 165–173. https://doi.org/10.1016/S0022-1139(01)00425-0

Article  CAS  Google Scholar 

Ezhov, V. K. (2013). Methods of extracting a small quantity of impurities during rectification of uranium hexafluoride in fluoride gas reprocessing of spent nuclear fuel. Atomic Energy, 114, 177–182. https://doi.org/10.1007/s10512-013-9692-0

Article  CAS  Google Scholar 

Zhang, B., Xiong, J., Chen, L., et al. (2020). Fundamental physicochemical properties of SF6-alternative gases: a review of recent progress. Journal of Physics D: Applied Physics, 53, 173001. https://doi.org/10.1088/1361-6463/ab6ea1

Kleerekoper, M. (1998). The role of fluoride in the prevention of osteoporosis. Endocrinology and Metabolism Clinics of North America, 27, 441–452. https://doi.org/10.1016/s0889-8529(05)70015-3

Article  CAS  PubMed  Google Scholar 

Briançon, D. (1997). Fluoride and osteoporosis: An overview. Revue du Rhumatisme English Edition, 64, 78–81.

Google Scholar 

Matsuo, S., Kiyomiya, K., & Kurebe, M. (1998). Mechanism of toxic action of fluoride in dental fluorosis: Whether trimeric G proteins participate in the disturbance of intracellular transport of secretory ameloblast exposed to fluoride. Archives of Toxicology, 72, 798–806. https://doi.org/10.1007/s002040050576

Article  CAS  PubMed  Google Scholar 

Evans, N. H., & Beer, P. D. (2014). Advances in anion supramolecular chemistry: From recognition to chemical applications. Angewandte Chemie International Edition, 53, 11716–11754. https://doi.org/10.1002/anie.201309937

Article  CAS  PubMed  Google Scholar 

Langton, M. J., Serpell, C. J., & Beer, P. D. (2016). Anion recognition in water: Recent advances from a supramolecular and macromolecular perspective. Angewandte Chemie International Edition, 55, 1974–1987. https://doi.org/10.1002/anie.201506589

Article  CAS  PubMed  Google Scholar 

Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy. Springer.

Book  Google Scholar 

Dhillon, A., Nair, M., & Kumar, D. (2016). Analytical methods for determination and sensing of fluoride in biotic and abiotic sources: A review. Analytical Methods, 8, 5338–5352. https://doi.org/10.1039/C6AY01534D

Article  CAS  Google Scholar 

Jali, B.R., & Baruah, J.B. (2021). Recent progress in Schiff bases in detections of fluoride ions. Dyes and Pigments, 194, 109575. https://doi.org/10.1016/j.dyepig.2021.109575

Zhang, M., Liang, R., Li, K., et al. (2022). Dual-emitting metal-organic frameworks for ratiometric fluorescence detection of fluoride and Al3+ in sequence. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 271, 120896. https://doi.org/10.1016/j.saa.2022.120896

Yan X, Li Y-P, Lei J, et al (2021) Introduction of continuous excited-state intermolecular proton transfer process into open yttrium-terephthalate framework for ratiometric fluorescent fluorion detection. Journal of Solid State Chemistry, 300, 122212. https://doi.org/10.1016/j.jssc.2021.122212

Chen, B., Jiang, T., Fu, H., et al. (2021). Ultrasensitive, rapid and selective sensing of hazardous fluoride ion in aqueous solution using a zirconium porphyrinic luminescent metal-organic framework. Analytica Chimica Acta, 1145, 95–102. https://doi.org/10.1016/j.aca.2020.11.007

Article  CAS  PubMed  Google Scholar 

Wang, H. (2021). Fluoride ion-induced gas sensor based on the dipyrromethene boron difluoride derivative: A theoretical investigation. Journal of Physical Organic Chemistry, 34, e4265. https://doi.org/10.1002/poc.4265

Chen, X., Liu, Y.-C., Bai, J., et al. (2021). A “turn-on” fluorescent probe based on BODIPY dyes for highly selective detection of fluoride ions. Dyes and Pigments, 190, 109347. https://doi.org/10.1016/j.dyepig.2021.109347

Wang, J., Zong, Q., Wu, Q., et al. (2015). Synthesis and photo-property of 2-cyano boron-dipyrromethene and the application for detecting fluoride ion. Tetrahedron, 71, 9611–9616. https://doi.org/10.1016/j.tet.2015.10.081

Article  CAS  Google Scholar 

Chen, X., Shao, H., Zhu, T., et al. (2022). A new fluoride chemodosimeter based on 3-ether-substituted 1, 8-naphthalimide derivatives. Journal of Fluorescence, 32, 921–926. https://doi.org/10.1007/s10895-021-02871-5

Article  CAS  PubMed  Google Scholar 

Zhang, S., Gu, Y., Shi, Z., et al. (2021). A novel reversible fluorescent probe based on naphthalimide for sequential detection of aluminum (Al3+) and fluoride (F−) ions and its applications. Analytical Methods, 13, 5360–5368. https://doi.org/10.1039/D1AY01545A

Article  CAS  PubMed  Google Scholar 

Kongwutthivech, J., Tuntulani, T., Promarak, V., & Tomapatanaget, B. (2020). Dual naked-eye optical sensor based on imidazolium cation and napthalamide for specific detection of fluoride. Journal of Fluorescence, 30, 259–267. https://doi.org/10.1007/s10895-020-02494-2

Article  CAS  PubMed  Google Scholar 

Upadhyay, K. K., Mishra, R. K., Kumar, V., & Chowdhury, P. K. R. (2010). A coumarin based ICT probe for fluoride in aqueous medium with its real application. Talanta, 82, 312–318. https://doi.org/10.1016/j.talanta.2010.04.041

Article  CAS  PubMed  Google Scholar 

Xiong, S., Nanda Kishore, M.V., Zhou, W., & He, Q. (2022). Recent advances in selective recognition of fluoride with macrocyclic receptors. Coordination Chemistry Reviews, 461, 214480. https://doi.org/10.1016/j.ccr.2022.214480

Zhang, Z., Kim, D. S., Lin, C.-Y., et al. (2015). Expanded porphyrin-anion supramolecular assemblies: environmentally responsive sensors for organic solvents and anions. Journal of the American Chemical Society, 137, 7769–7774. https://doi.org/10.1021/jacs.5b03131

Article  CAS  PubMed  Google Scholar 

Dalapati, S., Jana, S., & Guchhait, N. (2014). Anion recognition by simple chromogenic and chromo-fluorogenic salicylidene Schiff base or reduced-Schiff base receptors. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 129, 499–508. https://doi.org/10.1016/j.saa.2014.03.090

Article  CAS  PubMed  Google Scholar 

Ünver, H., Boyacioglu, B., Demir, N., et al. (2020). A Schiff base colorimetric probe for real-time naked-eye detection of biologically important fluoride and cyanide ions: Single crystal, experimental, theoretical, biological and antioxidant studies. Journal of Molecular Structure, 1221, 128663. https://doi.org/10.1016/j.molstruc.2020.128663

Borah, N., De, S., Gogoi, A., & Das, G. (2020). A series of benzothiazole-based Schiff bases for the colorimetric sensing of fluoride and acetate ions: Acetate-induced turn-on fluorescence for selectivity. New Journal of Chemistry, 44, 18703–18713. https://doi.org/10.1039/D0NJ03516E

Article  CAS  Google Scholar 

Nakwanich, B., Koonwong, A., Suramitr, A., et al. (2021). Spectroscopy and a theoretical study of colorimetric sensing of fluoride ions by salicylidene based Schiff base derivatives. Journal of Molecular Structure, 1245, 131132. https://doi.org/10.1016/j.molstruc.2021.131132

Gauthama, B.U., Narayana, B., Sarojini, B.K., et al. (2020). Colorimetric ‘naked eye’ sensor for fluoride ion based on isatin hydrazones via hydrogen bond formation: Design, synthesis and characterization ascertained by nuclear magnetic resonance, ultraviolet–visible, computational and electrochemical studies. Inorganic Chemistry Communications, 121, 108216. https://doi.org/10.1016/j.inoche.2020.108216

Berhanu, A. L., Gaurav, M. I., et al. (2019). A review of the applications of Schiff bases as optical chemical sensors. TrAC Trends in Analytical Chemistry, 116, 74–91. https://doi.org/10.1016/j.trac.2019.04.025

Article  CAS  Google Scholar 

Wan, H., Xu, Q., Gu, P., et al. (2021). AIE-based fluorescent sensors for low concentration toxic ion detection in water. Journal of Hazardous Materials, 403, 123656. https://doi.org/10.1016/j.jhazmat.2020.123656

Krishnaveni, K., Gurusamy, S., Rajakumar, K., et al. (2022). Aggregation induced emission (AIE), selective fluoride ion sensing and lysozyme interaction properties of Julolidinesulphonyl derived Schiff base. Journal of Photochemistry and Photobiology A: Chemistry, 427, 113822. https://doi.org/10.1016/j.jphotochem.2022.113822

AnbuDurai, W., & Ramu, A. (2020). Hydrazone based dual—responsive colorimetric and ratiometric chemosensor for the detection of Cu2+/F− ions: DNA tracking, practical performance in environmental samples and tooth paste. Journal of Fluorescence, 30, 275–289. https://doi.org/10.1007/s10895-020-02488-0

Article  CAS  Google Scholar 

Saini, N., Wannasiri, C., Chanmungkalakul, S., et al. (2019). Furan/thiophene-based fluorescent hydrazones as fluoride and cyanide sensors. Journal of Photochemistry and Photobiology A: Chemistry, 385, 112038. https://doi.org/10.1016/j.jphotochem.2019.112038

Mondal, A., & Banerjee, P. (2021). Chromofluorogenic sensory probe for ppb level recognition of hazardous F−: Proposition towards Hg2+ mediated logic gate simulator. Journal of Fluorine Chemistry, 246, 109783. https://doi.org/10.1016/j.jfluchem.2021.109783

Mondal, A., Hazra, A., Chakrabarty, J., et al. (2020). A harmonized applied and theoretical exploration for nanomolar level recognition of perilous F− and CN− by multichannel chemosensor: proposition of Hg2+-mediated logic gate imitator. ChemistrySelect, 5, 11976–11985. https://doi.org/10.1002/slct.202002964

Article  CAS  Google Scholar 

Sharma, D., Sahoo, S. K., Chaudhary, S., et al. (2013). Fluorescence ‘turn-on’ sensor for F− derived from vitamin B6 cofactor. The Analyst, 138, 3646–3650. https://doi.org/10.1039/C3AN00199G

Article  CAS  PubMed  Google Scholar 

Sharma, D., Ashok Kumar, S. K., & Sahoo, S. K. (2014). Vitamin B6 cofactor derived chemosensor for the selective colorimetric detection of acetate anions. Tetrahedron Letters, 55, 927–930. https://doi.org/10.1016/j.tetlet.2013.12.051

Article  CAS  Google Scholar 

Sharma, D., Moirangthem, A., Roy, S. M., et al. (2015). Bioimaging application of a novel anion selective chemosensor derived from vitamin B6 cofactor. Journal of Photochemistry and Photobiology B: Biology, 148, 37–42. https://doi.org/10.1016/j.jphotobiol.2015.03.021

Article  CAS  PubMed  Google Scholar 

Anand, T., Kumar, S. K. A., & Sahoo, S. K. (2017). Vitamin B6 cofactor derivative: A dual fluorescent turn-on sensor to detect Zn2+ and CN− ions and its application in live cell imaging. ChemistrySelect, 2, 7570–7579. https://doi.org/10.1002/slct.201701024

Article  CAS  Google Scholar 

Li, X., Wen, Q., Gu, J., et al. (2020). Diverse reactivity to hypochlorite and copper ions based on a novel Schiff base derived from vitamin B6 cofactor. Journal of Molecular Liquids, 319, 114124. https://doi.org/10.1016/j.molliq.2020.114124

Sahoo, S. K. (2021). Chromo-fluorogenic sensing using vitamin B6 cofactors and their derivatives: A review. New Journal of Chemistry, 45, 8874–8897. https://doi.org/10.1039/D1NJ01008E

Article  CAS  Google Scholar 

Upadhyay, Y., Paira, P., Ashok Kumar, S. K., et al. (2019). Vitamin B6 cofactor conjugated rhodamine 6G derivative: Fluorescent turn-on sensing of Al(III) and Cr(III) with bioimaging application in live HeLa cells. Inorganica Chimica Acta, 489, 198–203. https://doi.org/10.1016/j.ica.2019.02.028

Article  CAS  Google Scholar 

Bothra, S., Babu, L. T., Paira, P., et al. (2018). A biomimetic approach to conjugate vitamin B6 cofactor with the lysozyme cocooned fluorescent AuNCs and its application in turn-on sensing of zinc(II) in environmental and biological samples. Analytical and Bioanalytical Chemistry, 410, 201–210. https://doi.org/10.1007/s00216-017-0710-2

Article  CAS  PubMed  Google Scholar 

Zavalishin, M. N., Gamov, G. A., Pimenov, O.A., et al. (2022). Pyridoxal 5′-phosphate 2-methyl-3-furoylhydrazone as a selective sensor for Zn2+ ions in water and drug samples. Journal of Photoche

Comments (0)

No login
gif