A laser flash photolysis study of the free radical chemistry of lipoic acid and dihydrolipoic acid

Çakatay, U. (2006). Pro-oxidant actions of α-lipoic acid and dihydrolipoic acid. Medical Hypotheses, 66, 110–117.

Article  PubMed  Google Scholar 

Lechner, S., Steimbach, R. R., Wang, L., Deline, M. L., Chang, Y.-C., Fromme, T., Klingenspor, M., Matthias, P., Miller, A. K., Médard, G., & Kuster, B. (2023). Chemoproteomic target deconvolution reveals Histone Deacetylases as targets of (R)-lipoic acid. Nature Communications, 14, 3548.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salehi, B., Berkay Yılmaz, Y., Antika, G., Boyunegmez Tumer, T., Fawzi Mahomoodally, M., Lobine, D., Akram, M., Riaz, M., Capanoglu, E., Sharopov, F., Martins, N., Cho, W. C., & Sharifi-Rad, J. (2019). Insights on the use of α-lipoic acid for therapeutic purposes. Biomolecules, 9, 356.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kurutas, E. B. (2015). The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutrition Journal, 15, 71–22.

Article  Google Scholar 

Petersen Shay, K., Moreau, R. F., Smith, E. J., & Hagen, T. M. (2008). Is α-lipoic acid a scavenger of reactive oxygen species in vivo? Evidence for its initiation of stress signaling pathways that promote endogenous antioxidant capacity. IUBMB Life, 60, 362–367.

Article  PubMed  Google Scholar 

Haj-Yehia, A. I., Assaf, P., Nassar, T., & Katzhendler, J. (2000). Determination of lipoic acid and dihydrolipoic acid in human plasma and urine by high-performance liquid chromatography with fluorimetric detection. Journal of Chromatography A, 870, 381–388.

Article  CAS  PubMed  Google Scholar 

Packer, L., Witt, E. H., & Tritschler, H. J. (1995). Alpha-lipoic acid as a biological antioxidant. Free Radical Biology and Medicine, 19, 227–250.

Article  CAS  PubMed  Google Scholar 

Kagan, V. E., Shvedova, A., Serbinova, E., Khan, S., Swanson, C., Powell, R., & Packer, L. (1992). Dihydrolipoic acid—a universal antioxidant both in the membrane and in the aqueous phase: Reduction of peroxyl, ascorbyl and chromanoxyl radicals. Biochemical Pharmacology, 44, 1637–1649.

Article  CAS  PubMed  Google Scholar 

Zhao, F., & Liu, Z. Q. (2011). Comparison of antioxidant effectiveness of lipoic acid and dihydrolipoic acid. Journal of Biochemical and Molecular Toxicology, 25, 216–223.

Article  CAS  PubMed  Google Scholar 

Castañeda-Arriaga, R., & Alvarez-Idaboy, J. R. (2014). Lipoic acid and dihydrolipoic acid. A comprehensive theoretical study of their antioxidant activity supported by available experimental kinetic data. Journal of Chemical Information and Modeling, 54, 1642–1652.

Article  PubMed  Google Scholar 

Schmidt, U., & Müller, A. (1964). Über organische schwefelradikale. IV. Öffnung der disulfidbrücke durch cyanisopropyl-radikale. Justus Liebigs Annalen der Chemie, 672, 90–96.

Article  CAS  Google Scholar 

Pryor, W. A., & Smith, K. (1970). Reactions of radicals. 24. Mechanism of the substitution reaction on sulfur atoms by radicals or nucleophiles. Journal of the American Chemical Society, 92, 2731–2738.

Article  CAS  Google Scholar 

Ingold, K. U., & Roberts, B. P. (1971). Free-radical substitution reactions. Wiley-Interscience.

Google Scholar 

Beckwith, A. L. J., & Duggan, S. A. M. (1994). Kinetics of intramolecular alkyl radical attack on sulfur in disulfides and thioesters. Journal of the Chemical Society Perkin Transactions 2. https://doi.org/10.1039/P29940001509

Article  Google Scholar 

Krenske, E. H., Pryor, W. A., & Houk, K. N. (2009). Mechanism of SH2 reactions of disulfides: Frontside vs backside, stepwise vs concerted. Journal of Organic Chemistry, 74, 5356–5360.

Article  CAS  PubMed  Google Scholar 

Avila, D. V., Lusztyk, J., & Ingold, K. U. (1992). Color benzyloxyl, cumyloxyl orange, and 4-methoxycumyloxyl blue. Unexpected discovery that arylcarbinyloxyl radicals have strong absorptions in the visible. Journal of the American Chemical Society, 114, 6576–6577.

Article  CAS  Google Scholar 

Avila, D. V., Brown, C. E., Ingold, K. U., & Lusztyk, J. (1993). Solvent effects on the competitive b-scission and hydrogen atom abstraction reactions of the cumyloxyl radical. Resolution of a long-standing problem. Journal of the American Chemical Society, 115, 466–470.

Article  CAS  Google Scholar 

Baignée, A., Howard, J. A., Scaiano, J. C., & Stewart, L. C. (1983). Absolute rate constants for reactions of cumyloxy in solution. Journal of the American Chemical Society, 105, 6120–6123.

Article  Google Scholar 

Fasciani, C., Bueno Alejo, C. J., Grenier, M., Netto-Ferreira, J. C., & Scaiano, J. C. (2011). High-temperature organic reactions at room temperature using plasmon excitation: Decomposition of dicumyl peroxide. Organic Letters, 13, 204–207.

Article  CAS  PubMed  Google Scholar 

Paul, H., Small, R. D., Jr., & Scaiano, J. C. (1978). Hydrogen abstraction by tert-butoxy radicals. A laser photolysis and electron spin resonance study. Journal of the American Chemical Society, 100, 4520–4527.

Article  CAS  Google Scholar 

Small, R. D., Scaiano, J. C., & Patterson, L. K. (1978). Radical processes in lipids. A laser photolysis study of tert-butoxy radical reactivity toward fatty acids. Photochemistry and Photobiology, 29, 49.

Article  Google Scholar 

Hoffman, M. Z., & Hayon, E. (1972). One-electron reduction of the disulfide linkage in aqueous solution. Formation, protonation, and decay kinetics of the RSSR-radical. Journal of the American Chemical Society, 94, 7950–7957.

Article  CAS  Google Scholar 

Hofstetter, D., Nauser, T., & Koppenol, W. H. (2007). The glutathione thiyl radical does not react with nitrogen monoxide. Biochemical and Biophysical Research Communications, 360, 146–148.

Article  CAS  PubMed  Google Scholar 

Nauser, T., Casi, G., Koppenol, W. H., & Schöneich, C. (2008). Reversible intramolecular hydrogen transfer between cysteine thiyl radicals and glycine and alanine in model peptides: Absolute rate constants derived from pulse radiolysis and laser flash photolysis. The Journal of Physical Chemistry B, 112, 15034–15044.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schöneich, C. (2022). Redox chemistry and biology of thiols (pp. 115–132). Elsevier.

Book  Google Scholar 

Dénès, F., Pichowicz, M., Povie, G., & Renaud, P. (2014). Thiyl radicals in organic synthesis. Chemical Reviews, 114, 2587–2693.

Article  PubMed  Google Scholar 

Mottley, C., & Mason, R. P. (2001). Sulfur-centered radical formation from the antioxidant dihydrolipoic acid*. Journal of Biological Chemistry, 276, 42677–42683.

Article  CAS  PubMed  Google Scholar 

Cely-Pinto, M., Wang, B., & Scaiano, J. C. (2023). Understanding α-lipoic acid photochemistry helps to control the synthesis of plasmonic gold nanostructures. Photochemical & Photobiological Sciences, 22, 1299–1307.

Article  CAS  Google Scholar 

Yaghmaei, M., & Scaiano, J. C. (2023). A simple Norrish type II actinometer for flow photoreactions. Photochemical & Photobiological Sciences, 22, 1865–1874.

Article  CAS  Google Scholar 

Jockusch, S., Landis, M. S., Freiermuth, B., & Turro, N. J. (2001). Photochemistry and photophysics of a-hydroxy ketones. Macromolecules, 34, 1619–1626.

Article  CAS  Google Scholar 

McGilvray, K. L., Decan, M. R., Wang, D., & Scaiano, J. C. (2006). Facile photochemical synthesis of unprotected aqueous gold nanoparticles. Journal of the American Chemical Society, 128, 15980–15981.

Article  CAS  PubMed  Google Scholar 

Yaghmaei, M., Bourgonje, C. R., & Scaiano, J. C. (2023). Facile scale-up of the flow synthesis of silver nanostructures based on Norrish type I photoinitiators. Molecules, 28, 4445.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Curran, D. P., Martin-Esker, A. A., Ko, S. B., & Newcomb, M. (1993). Rate constants for chalcogen group transfers in bimolecular substitution reactions with primary alkyl radicals. Journal of Organic Chemistry, 58, 4691–4695.

Article  CAS  Google Scholar 

Cohen, S. G., Orman, S., & Laufer, D. (1962). Mercaptans and disulfides as inhibitors of non-chain radiation induced Reactions. Journal of the American Chemical Society, 84, 1061–1062.

Article  CAS  Google Scholar 

Cohen, S. G., & Aktipis, S. (1966). Photoreduction of benzophenone in methyl 2-octyl ether effects of mercaptan disulfide and oxygen 1. Journal of the American Chemical Society, 88, 3587–3594.

Article  CAS  Google Scholar 

Folkes, L. K., Bartesaghi, S., Trujillo, M., Wardman, P., & Radi, R. (2022). Radiolysis studies of oxidation and nitration of tyrosine and some other biological targets by peroxynitrite-derived radicals. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms23031797

Article  PubMed  PubMed Central  Google Scholar 

Fogacci, F., Rizzo, M., Krogager, C., Kennedy, C., Georges, C. M. G., Knežević, T., Liberopoulos, E., Vallée, A., Pérez-Martínez, P., Wenstedt, E. F. E., Šatrauskienė, A., Vrablík, M., & Cicero, A. F. G. (2020). Safety evaluation of α-lipoic acid supplementation: A systematic review and meta-analysis of randomized placebo-controlled clinical studies. Antioxidants, 9, 1011.

Article  CAS  PubMed  PubMed Central  Google Scholar 

https://www.mountsinai.org/health-library/supplement/alpha-lipoic-acid. Accessed 16 Jun 2023

Comments (0)

No login
gif