Carlson, C. J., Zipfel, C. M., Garnier, R., & Bansal, S. (2019). Global estimates of mammalian viral diversity accounting for host sharing. Nat. Ecol. Evol., 3, 1070–1075.
Mollentze, N., & Streicker, D. G. (2020). Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proceedings of the National Academy of Sciences of the United States of America, 117, 9423–9430.
CAS PubMed PubMed Central Google Scholar
Sharp, P. M., & Hahn, B. H. (2011). Origins of HIV and the AIDS Pandemic. Cold Spring Harbor Perspectives in Medicine, 1, a006841.
PubMed PubMed Central Google Scholar
Tumpey, T. M., Basler, C. F., Aguilar, P. V., Zeng, H., Solórzano, A., Swayne, D. E., Cox, N. J., Katz, J. M., Taubenberger, J. K., Palese, P., & García-Sastre, A. (2005). Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science, 310, 77–80.
Fehr, A. R., & Perlman, S. (2015). In H. J. Maier, E. Bickerton, & P. Britton (Eds.), Methods in molecular biology, Chap. 1 (pp. 1–23). Humana Press.
Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., & Garry, R. F. (2020). The proximal origin of SARS-CoV-2. Nature Medicine, 26, 450–452.
CAS PubMed PubMed Central Google Scholar
V’kovskiKratzelSteinerStalderThiel, P. A. S. H. V. (2021). Coronavirus biology and replication: Implications for SARS- CoV-2. Nature Reviews Microbiology, 19, 155–170.
Shang, Z., Yin, S., Liu, W. J., Li, P., & Huang, W. (2021). recent insights into emerging coronavirus: SARS-CoV-2. ACS Infect. Dis, 7, 1369–1388.
Walls, A. C., Park, Y.-J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181, 281–292.
CAS PubMed PubMed Central Google Scholar
Gil, C., Ginex, T., Maestro, I., Nozal, V., Barrado-Gil, L., Cuesta-Geijo, M. A., Urquiza, J., Ramírez, D., Alonso, C., Campillo, N. E., & Martinez, A. (2020). COVID-19: Drug targets and potential treatments. Journal of Medicinal Chemistry, 63, 12359–12386.
Sungnak, W., Huang, N., Bécavin, C., Berg, M., Queen, R., Litvinukova, M., Talavera-López, C., Maatz, H., Reichart, D., Sampaziotis, F., Worlock, K. B., Yoshida, M., Barnes, J. L., Banovich, N. E., Barbry, P., Brazma, A., Collin, J., Desai, T. J., Duong, T. E., Eickelberg, O., et al. (2020). SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nature Medicine, 26, 651–687.
Riva, L., Yuan, S., Yin, X., Martin-Sancho, L., Matsunaga, N., Pache, L., Burgstaller-Muehlbacher, S., De Jesus, P. D., Teriete, P., Hull, M. V., Chang, M. W., Chan, J.F.-W., Cao, J., Poon, V.K.-M., Herbert, K. M., Cheng, K., Nguyen, T.-T.H., Rubanov, A., Pu, Y., Nguyen, C., et al. (2020). Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature, 586, 113–119.
CAS PubMed PubMed Central Google Scholar
Bakowski, M. A., Beutler, N., Wolff, K. C., Kirkpatrick, M. G., Chen, E., Nguyen, T.-T.H., Riva, L., Shaabani, N., Parren, M., Ricketts, J., Gupta, A. K., Pan, K., Kuo, P., Fuller, M., Garcia, E., Teijaro, J. R., Yang, L., Sahoo, D., Chi, V., Huang, E., et al. (2021). Drug repurposing screens identify chemical entities for the development of COVID-19 interventions. Nature Communications, 12, 3309.
CAS PubMed PubMed Central Google Scholar
Xu, T., Xu, M., Zhu, W., Chen, C. Z., Zhang, Q., Zheng, W., & Huang, R. (2022). Efficient Identification of anti-SARS-CoV-2 compounds using chemical structure- and biological activity-based modeling. Journal of Medicinal Chemistry, 65, 4590–4599.
CAS PubMed PubMed Central Google Scholar
Beigel, J. H., Tomashek, K. M., Dodd, L. E., Mehta, A. K., Zingman, B. S., Kalil, A. C., Hohmann, E., Chu, H. Y., Luetkemeyer, A., Kline, S., de Castilla, D. L., Finberg, R. W., & Members, A.-S.G. (2020). Remdesivir for the treatment of Covid-19—final report. New Engl. J. Med., 383, 1813–1826.
Jayk Bernal, A., Gomes da Silva, M. M., Musungaie, D. B., Kovalchuk, E., Gonzalez, A., Delos Reyes, V., Martín-Quirós, A., Caraco, Y., Williams-Diaz, A., Brown, M. L., Du, J., Pedley, A., Assaid, C., Strizki, J., Grobler, J. A., Shamsuddin, H. H., Tipping, R., Wan, H., Paschke, A., Butterton, J. R., et al. (2021). Molnupiravir for oral treatment of Covid-19 in nonhospitalized patients. New England Journal of Medicine, 386, 509–520.
Liu, C., Zhou, Q., Li, Y., Garner, L. V., Watkins, S. P., Carter, L. J., Smoot, J., Gregg, A. C., Daniels, A. D., Jervey, S., & Albaiu, D. (2020). Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Central Science, 6, 315–331.
CAS PubMed PubMed Central Google Scholar
Hammond, J., Leister-Tebbe, H., Gardner, A., Abreu, P. E., Bao, W., Wisemandle, W., Baniecki, M., Hendrick, V. M., Damle, B., Simón-Campos, A., Pypstra, R., & Rusnak, J. M. (2022). Oral nirmatrelvir for high-risk, nonhospitalized adults with Covid-19. New Engl. J. Med., 386, 1397–1408.
Halford, H. (2022). How Pfizer scientists transformed an old drug lead into an oral COVID-19 antiviral. ACS Central Science, 8, 405–407.
CAS PubMed PubMed Central Google Scholar
Iketani, S., Mohri, H., Culbertson, B., Hong, S. J., Duan, Y., Luck, M. I., Annavajhala, M. K., Guo, Y., Sheng, Z., Uhlemann, A.-C., Goff, S. P., Sabo, Y., Yang, H., Chavez, A., & Ho, D. D. (2023). Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir. Nature, 613, 558–564.
Wolf, M. C., Freiberg, A. N., Zhang, T., Akyol-Ataman, Z., Grock, A., Hong, P. W., Li, J., Watson, N. F., Fang, A. Q., Aguilar, H. C., Porotto, M., Honko, A. N., Damoiseaux, R., Miller, J. P., Woodson, S. E., Chantasirivisal, S., Fontanes, V., Negrete, O. A., Krogstad, P., Dasgupta, A., et al. (2020). A broad-spectrum antiviral targeting entry of enveloped viruses. Proceedings of the National academy of Sciences of the United States of America, 107, 3157–3162.
Vincent, M. R., Colpitts, C. C., Ustinov, A. V., Muqadas, M. A. J. M., Barsby, N. L., Epand, R. F., Epand, R. M., Khramyshev, S. A., Valueva, O. A., Korshun, V. A., Tyrrell, D. L. J., & Schang, L. M. (2010). Rigid amphipathic fusion inhibitors, small molecule antiviral compounds against enveloped viruses. Proceedings of the National academy of Sciences of the United States of America, 107, 17339–17244.
Wiehe, A., O’Brien, J. M., & Senge, M. O. (2019). Trends and targets in antiviral phototherapy. Photochemical & Photobiological Sciences, 18, 2565–2612.
Dabrowski, J. M., & Arnaut, L. G. (2015). Photodynamic therapy (PDT) of cancer: From a local to a systemic treatment. Photochemical & Photobiological Sciences, 14, 1765–1780.
Aroso, R. T., Schaberle, F. A., Arnaut, L. G., & Pereira, M. M. (2021). Photodynamic disinfection and its role in controlling infectious diseases. Photochemical & Photobiological Sciences, 20, 1497–1545.
Arnaut, L. G., Pereira, M. M., Dabrowski, J. M., Silva, E. F., Schaberle, F. A., Abreu, A. R., Rocha, L. B., Barsan, M. M., Urbanska, K., Stochel, G., & Brett, C. M. (2014). Photodynamic therapy efficacy enhanced by dynamics: The role of charge transfer and photostability in the selection of photosensitizers. Chemistry--A European Journal, 20, 5346–5357.
Silva, E. F. F., Pedersen, B. W., Breitenbach, T., Toftegaard, R., Kuimova, M. K., Arnaut, L. G., & Ogilby, P. R. (2012). Irradiation- and sensitizer-dependent changes in the lifetime of intracellular singlet oxygen produced in a photosensitized process. The Journal of Physical Chemistry B, 116, 445–461.
Klein, S., Cortese, M., Winter, S. L., Wachsmuth-Melm, M., Neufeldt, C. J., Cerikan, B., Stanifer, M. L., Boulant, S., Bartenschlager, R., & Chlanda, P. (2020). SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. Nature Communications, 11, 5885.
CAS PubMed PubMed Central Google Scholar
Vinagreiro, C. S., Zangirolami, A., Schaberle, F. A., Nunes, S. C. C., Blanco, K. C., Inada, N. M., Da Silva, G. J., Pais, A. C. C., Bagnato, V. S., Arnaut, L. G., & Pereira, M. M. (2020). Antibacterial photodynamic inactivation of antibiotic-resistant bacteria and biofilms with nanomolar photosensitizer concentrations. ACS Infectious Disease, 6, 1517–1526.
Aroso, R. T., Dias, L. D., Blanco, K. C., Soares, J. M., Alves, F., Da Silva, G. J., Arnaut, L. G., Bagnato, V. S., & Pereira, M. M. (2022). Synergic dual phototherapy: Cationic imidazolyl photosensitizers and ciprofloxacin for eradication of in vitro and in vivo E. coli infections. Journal of Photochemistry and Photobiology B: Biology, 233, 112499.
Pineiro, M., Pereira, M. M., Gonsalves, AMd. A. R., & ArnautFormosinho, L. G. S. J. (2001). Singlet-oxygen quantum yields of halogenated chlorins. Potential new photodynamic therapy agents. Journal of Photochemistry and Photobiology, A: Chemistry, 138, 147–157.
Donohoe, C., Scharbele, F. A., Rodrigues, F. M. S., Gonçalves, N. P. F., Kingsbury, C. J., Pereira, M. M., Senge, M. O., & Gomes-da -SilvaArnaut, L. C. L. G. (2022). Unraveling the pivotal role of atropisomerism for cellular internalization. Journal of the American Chemical Society, 144, 15252–15265.
CAS PubMed PubMed Central Google Scholar
Lindsey, J. S., Hsu, H. C., & Schreiman, I. C. (1986). Synthesis of tetraphenylporphyrins under very mild conditions. Tetrahedron Letters, 27, 4969–4970.
Littler, B. J., Ciringh, Y., & Lindsey, J. S. (1999). Investigation of conditions giving minimal scrambling in the synthesis of trans-porphyrins from dipyrromethanes and aldehydes. Journal of Organic Chemistry, 64, 2864–2872.
Hine, J., & Ghirardelli, R. (1958). The SN-reactivity of β-fluorethyl iodides. Journal of Organic Chemistry, 23, 1550–1552.
Whitlock, H. W., Jr., Hanauer, R., Oester, M. Y., & Bower, B. K. (1969). Diimide reduction of porphyrins. Journal of the American Chemical Society, 91, 7485–7489.
Pereira, M. M., Abreu, A. A., Goncalves, N. P. F., Calvete, M. J. F., Simões, A. V. C., Monteiro, C. J. P., Arnaut, L. G., Eusébio, M. E., & Canotilho, J. (2012). An insight into solvent-free diimide porphyrin reduction: A versatile approach for meso-aryl hydroporphyrin synthesis. Green Chemistry, 14, 1666–1672.
Taniguchi, M., & Lindsey, J. S. (2017). Synthetic chlorins, possible surrogates for chlorophylls, prepared by derivatization of porphyrins. Chemical Reviews, 117, 344–535.
Aroso, R. T., Guedes, R. C., & Pereira, M. M. (2021). Synthesis of computationally designed 2,5(6)-benzimidazole derivatives via Pd-catalyzed reactions for potential E. coli DNA gyrase B inhibition. Molecules, 26, 1326.
CAS PubMed PubMed Central Google Scholar
Ratnayake, W. M. N., Grossert, J. S., & Ackman, R. G. (1990). Studies on the mechanism of the hydrazine reduction reaction: Applications to selected monoethylenic, diethylenic and triethylenic fatty acids ofcis configurations. Journal of the American Oil Chemists Society, 67, 940–946.
Espinosa, J. C., Navalon, S., Alvaro, M., Dhakshinamoorthy, A., & Garcia, H. (2018). Reduction of C═C double bonds by hydrazine using active carbons as metal-free catalysts. ACS Sustainable Chem. Eng., 6, 5607–5614.
Comments (0)