Selective, broad-spectrum antiviral photodynamic disinfection with dicationic imidazolyl chlorin photosensitizers

Carlson, C. J., Zipfel, C. M., Garnier, R., & Bansal, S. (2019). Global estimates of mammalian viral diversity accounting for host sharing. Nat. Ecol. Evol., 3, 1070–1075.

PubMed  Google Scholar 

Mollentze, N., & Streicker, D. G. (2020). Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proceedings of the National Academy of Sciences of the United States of America, 117, 9423–9430.

CAS  PubMed  PubMed Central  Google Scholar 

Sharp, P. M., & Hahn, B. H. (2011). Origins of HIV and the AIDS Pandemic. Cold Spring Harbor Perspectives in Medicine, 1, a006841.

PubMed  PubMed Central  Google Scholar 

Tumpey, T. M., Basler, C. F., Aguilar, P. V., Zeng, H., Solórzano, A., Swayne, D. E., Cox, N. J., Katz, J. M., Taubenberger, J. K., Palese, P., & García-Sastre, A. (2005). Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science, 310, 77–80.

CAS  PubMed  Google Scholar 

Fehr, A. R., & Perlman, S. (2015). In H. J. Maier, E. Bickerton, & P. Britton (Eds.), Methods in molecular biology, Chap. 1 (pp. 1–23). Humana Press.

Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., & Garry, R. F. (2020). The proximal origin of SARS-CoV-2. Nature Medicine, 26, 450–452.

CAS  PubMed  PubMed Central  Google Scholar 

V’kovskiKratzelSteinerStalderThiel, P. A. S. H. V. (2021). Coronavirus biology and replication: Implications for SARS- CoV-2. Nature Reviews Microbiology, 19, 155–170.

PubMed  Google Scholar 

Shang, Z., Yin, S., Liu, W. J., Li, P., & Huang, W. (2021). recent insights into emerging coronavirus: SARS-CoV-2. ACS Infect. Dis, 7, 1369–1388.

CAS  PubMed  Google Scholar 

Walls, A. C., Park, Y.-J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181, 281–292.

CAS  PubMed  PubMed Central  Google Scholar 

Gil, C., Ginex, T., Maestro, I., Nozal, V., Barrado-Gil, L., Cuesta-Geijo, M. A., Urquiza, J., Ramírez, D., Alonso, C., Campillo, N. E., & Martinez, A. (2020). COVID-19: Drug targets and potential treatments. Journal of Medicinal Chemistry, 63, 12359–12386.

CAS  PubMed  Google Scholar 

Sungnak, W., Huang, N., Bécavin, C., Berg, M., Queen, R., Litvinukova, M., Talavera-López, C., Maatz, H., Reichart, D., Sampaziotis, F., Worlock, K. B., Yoshida, M., Barnes, J. L., Banovich, N. E., Barbry, P., Brazma, A., Collin, J., Desai, T. J., Duong, T. E., Eickelberg, O., et al. (2020). SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nature Medicine, 26, 651–687.

Google Scholar 

Riva, L., Yuan, S., Yin, X., Martin-Sancho, L., Matsunaga, N., Pache, L., Burgstaller-Muehlbacher, S., De Jesus, P. D., Teriete, P., Hull, M. V., Chang, M. W., Chan, J.F.-W., Cao, J., Poon, V.K.-M., Herbert, K. M., Cheng, K., Nguyen, T.-T.H., Rubanov, A., Pu, Y., Nguyen, C., et al. (2020). Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature, 586, 113–119.

CAS  PubMed  PubMed Central  Google Scholar 

Bakowski, M. A., Beutler, N., Wolff, K. C., Kirkpatrick, M. G., Chen, E., Nguyen, T.-T.H., Riva, L., Shaabani, N., Parren, M., Ricketts, J., Gupta, A. K., Pan, K., Kuo, P., Fuller, M., Garcia, E., Teijaro, J. R., Yang, L., Sahoo, D., Chi, V., Huang, E., et al. (2021). Drug repurposing screens identify chemical entities for the development of COVID-19 interventions. Nature Communications, 12, 3309.

CAS  PubMed  PubMed Central  Google Scholar 

Xu, T., Xu, M., Zhu, W., Chen, C. Z., Zhang, Q., Zheng, W., & Huang, R. (2022). Efficient Identification of anti-SARS-CoV-2 compounds using chemical structure- and biological activity-based modeling. Journal of Medicinal Chemistry, 65, 4590–4599.

CAS  PubMed  PubMed Central  Google Scholar 

Beigel, J. H., Tomashek, K. M., Dodd, L. E., Mehta, A. K., Zingman, B. S., Kalil, A. C., Hohmann, E., Chu, H. Y., Luetkemeyer, A., Kline, S., de Castilla, D. L., Finberg, R. W., & Members, A.-S.G. (2020). Remdesivir for the treatment of Covid-19—final report. New Engl. J. Med., 383, 1813–1826.

CAS  PubMed  Google Scholar 

Jayk Bernal, A., Gomes da Silva, M. M., Musungaie, D. B., Kovalchuk, E., Gonzalez, A., Delos Reyes, V., Martín-Quirós, A., Caraco, Y., Williams-Diaz, A., Brown, M. L., Du, J., Pedley, A., Assaid, C., Strizki, J., Grobler, J. A., Shamsuddin, H. H., Tipping, R., Wan, H., Paschke, A., Butterton, J. R., et al. (2021). Molnupiravir for oral treatment of Covid-19 in nonhospitalized patients. New England Journal of Medicine, 386, 509–520.

PubMed  Google Scholar 

Liu, C., Zhou, Q., Li, Y., Garner, L. V., Watkins, S. P., Carter, L. J., Smoot, J., Gregg, A. C., Daniels, A. D., Jervey, S., & Albaiu, D. (2020). Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Central Science, 6, 315–331.

CAS  PubMed  PubMed Central  Google Scholar 

Hammond, J., Leister-Tebbe, H., Gardner, A., Abreu, P. E., Bao, W., Wisemandle, W., Baniecki, M., Hendrick, V. M., Damle, B., Simón-Campos, A., Pypstra, R., & Rusnak, J. M. (2022). Oral nirmatrelvir for high-risk, nonhospitalized adults with Covid-19. New Engl. J. Med., 386, 1397–1408.

CAS  PubMed  Google Scholar 

Halford, H. (2022). How Pfizer scientists transformed an old drug lead into an oral COVID-19 antiviral. ACS Central Science, 8, 405–407.

CAS  PubMed  PubMed Central  Google Scholar 

Iketani, S., Mohri, H., Culbertson, B., Hong, S. J., Duan, Y., Luck, M. I., Annavajhala, M. K., Guo, Y., Sheng, Z., Uhlemann, A.-C., Goff, S. P., Sabo, Y., Yang, H., Chavez, A., & Ho, D. D. (2023). Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir. Nature, 613, 558–564.

CAS  PubMed  Google Scholar 

Wolf, M. C., Freiberg, A. N., Zhang, T., Akyol-Ataman, Z., Grock, A., Hong, P. W., Li, J., Watson, N. F., Fang, A. Q., Aguilar, H. C., Porotto, M., Honko, A. N., Damoiseaux, R., Miller, J. P., Woodson, S. E., Chantasirivisal, S., Fontanes, V., Negrete, O. A., Krogstad, P., Dasgupta, A., et al. (2020). A broad-spectrum antiviral targeting entry of enveloped viruses. Proceedings of the National academy of Sciences of the United States of America, 107, 3157–3162.

Google Scholar 

Vincent, M. R., Colpitts, C. C., Ustinov, A. V., Muqadas, M. A. J. M., Barsby, N. L., Epand, R. F., Epand, R. M., Khramyshev, S. A., Valueva, O. A., Korshun, V. A., Tyrrell, D. L. J., & Schang, L. M. (2010). Rigid amphipathic fusion inhibitors, small molecule antiviral compounds against enveloped viruses. Proceedings of the National academy of Sciences of the United States of America, 107, 17339–17244.

Google Scholar 

Wiehe, A., O’Brien, J. M., & Senge, M. O. (2019). Trends and targets in antiviral phototherapy. Photochemical & Photobiological Sciences, 18, 2565–2612.

CAS  Google Scholar 

Dabrowski, J. M., & Arnaut, L. G. (2015). Photodynamic therapy (PDT) of cancer: From a local to a systemic treatment. Photochemical & Photobiological Sciences, 14, 1765–1780.

CAS  Google Scholar 

Aroso, R. T., Schaberle, F. A., Arnaut, L. G., & Pereira, M. M. (2021). Photodynamic disinfection and its role in controlling infectious diseases. Photochemical & Photobiological Sciences, 20, 1497–1545.

CAS  Google Scholar 

Arnaut, L. G., Pereira, M. M., Dabrowski, J. M., Silva, E. F., Schaberle, F. A., Abreu, A. R., Rocha, L. B., Barsan, M. M., Urbanska, K., Stochel, G., & Brett, C. M. (2014). Photodynamic therapy efficacy enhanced by dynamics: The role of charge transfer and photostability in the selection of photosensitizers. Chemistry--A European Journal, 20, 5346–5357.

CAS  PubMed  Google Scholar 

Silva, E. F. F., Pedersen, B. W., Breitenbach, T., Toftegaard, R., Kuimova, M. K., Arnaut, L. G., & Ogilby, P. R. (2012). Irradiation- and sensitizer-dependent changes in the lifetime of intracellular singlet oxygen produced in a photosensitized process. The Journal of Physical Chemistry B, 116, 445–461.

PubMed  Google Scholar 

Klein, S., Cortese, M., Winter, S. L., Wachsmuth-Melm, M., Neufeldt, C. J., Cerikan, B., Stanifer, M. L., Boulant, S., Bartenschlager, R., & Chlanda, P. (2020). SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. Nature Communications, 11, 5885.

CAS  PubMed  PubMed Central  Google Scholar 

Vinagreiro, C. S., Zangirolami, A., Schaberle, F. A., Nunes, S. C. C., Blanco, K. C., Inada, N. M., Da Silva, G. J., Pais, A. C. C., Bagnato, V. S., Arnaut, L. G., & Pereira, M. M. (2020). Antibacterial photodynamic inactivation of antibiotic-resistant bacteria and biofilms with nanomolar photosensitizer concentrations. ACS Infectious Disease, 6, 1517–1526.

CAS  Google Scholar 

Aroso, R. T., Dias, L. D., Blanco, K. C., Soares, J. M., Alves, F., Da Silva, G. J., Arnaut, L. G., Bagnato, V. S., & Pereira, M. M. (2022). Synergic dual phototherapy: Cationic imidazolyl photosensitizers and ciprofloxacin for eradication of in vitro and in vivo E. coli infections. Journal of Photochemistry and Photobiology B: Biology, 233, 112499.

CAS  PubMed  Google Scholar 

Pineiro, M., Pereira, M. M., Gonsalves, AMd. A. R., & ArnautFormosinho, L. G. S. J. (2001). Singlet-oxygen quantum yields of halogenated chlorins. Potential new photodynamic therapy agents. Journal of Photochemistry and Photobiology, A: Chemistry, 138, 147–157.

CAS  Google Scholar 

Donohoe, C., Scharbele, F. A., Rodrigues, F. M. S., Gonçalves, N. P. F., Kingsbury, C. J., Pereira, M. M., Senge, M. O., & Gomes-da -SilvaArnaut, L. C. L. G. (2022). Unraveling the pivotal role of atropisomerism for cellular internalization. Journal of the American Chemical Society, 144, 15252–15265.

CAS  PubMed  PubMed Central  Google Scholar 

Lindsey, J. S., Hsu, H. C., & Schreiman, I. C. (1986). Synthesis of tetraphenylporphyrins under very mild conditions. Tetrahedron Letters, 27, 4969–4970.

CAS  Google Scholar 

Littler, B. J., Ciringh, Y., & Lindsey, J. S. (1999). Investigation of conditions giving minimal scrambling in the synthesis of trans-porphyrins from dipyrromethanes and aldehydes. Journal of Organic Chemistry, 64, 2864–2872.

CAS  PubMed  Google Scholar 

Hine, J., & Ghirardelli, R. (1958). The SN-reactivity of β-fluorethyl iodides. Journal of Organic Chemistry, 23, 1550–1552.

CAS  Google Scholar 

Whitlock, H. W., Jr., Hanauer, R., Oester, M. Y., & Bower, B. K. (1969). Diimide reduction of porphyrins. Journal of the American Chemical Society, 91, 7485–7489.

CAS  Google Scholar 

Pereira, M. M., Abreu, A. A., Goncalves, N. P. F., Calvete, M. J. F., Simões, A. V. C., Monteiro, C. J. P., Arnaut, L. G., Eusébio, M. E., & Canotilho, J. (2012). An insight into solvent-free diimide porphyrin reduction: A versatile approach for meso-aryl hydroporphyrin synthesis. Green Chemistry, 14, 1666–1672.

CAS  Google Scholar 

Taniguchi, M., & Lindsey, J. S. (2017). Synthetic chlorins, possible surrogates for chlorophylls, prepared by derivatization of porphyrins. Chemical Reviews, 117, 344–535.

CAS  PubMed  Google Scholar 

Aroso, R. T., Guedes, R. C., & Pereira, M. M. (2021). Synthesis of computationally designed 2,5(6)-benzimidazole derivatives via Pd-catalyzed reactions for potential E. coli DNA gyrase B inhibition. Molecules, 26, 1326.

CAS  PubMed  PubMed Central  Google Scholar 

Ratnayake, W. M. N., Grossert, J. S., & Ackman, R. G. (1990). Studies on the mechanism of the hydrazine reduction reaction: Applications to selected monoethylenic, diethylenic and triethylenic fatty acids ofcis configurations. Journal of the American Oil Chemists Society, 67, 940–946.

CAS  Google Scholar 

Espinosa, J. C., Navalon, S., Alvaro, M., Dhakshinamoorthy, A., & Garcia, H. (2018). Reduction of C═C double bonds by hydrazine using active carbons as metal-free catalysts. ACS Sustainable Chem. Eng., 6, 5607–5614.

CAS 

Comments (0)

No login
gif