KloosWolfshohl, W. E. J. F. (1982). Identification of Staphylococcus species with the API STAPH-IDENT system. Journal of Clinical Microbiology, 16, 509516. https://doi.org/10.1128/jcm.16.3.509-516.1982
TongDavisEichenbergerHollandFowler, S. Y. C. J. S. E. T. L. V. G. (2015). Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 28, 603661. https://doi.org/10.1128/CMR.00134-14
van BoldockSurewaardShamarinaNaFeiAliWilliamsPollittSzkutaMorrisPrajsnarMcCoyJinDockrellStrijpKubesRenshawFoster, E. B. G. J. D. M. Y. A. A. E. J. G. P. P. T. K. K. D. T. D. H. J. A. G. P. S. A. S. J. (2018). Human skin commensals augment Staphylococcus aureus pathogenesis. Nature Microbiology, 3, 881890. https://doi.org/10.1038/s41564-018-0198-3
SuayaMeraCassidyO’HaraAmrine-MadsenBurstinMiller, J. A. R. M. A. P. H. S. L. G. (2014). Incidence and cost of hospitalizations associated with Staphylococcus aureusskin and soft tissue infections in the United States from 2001 through 2009. BMC Infectious Diseases, 14, 296. https://doi.org/10.1186/1471-2334-14-296
MillerEisenbergLiuChangWangLuthraWallaceFangSingerSuaya, L.G.D.F.H.C.-L.Y.R.A.C.J.J.A. (2015). Incidence of skin and soft tissue infections in ambulatory and inpatient settings, 2005–2010. BMC Infectious Diseases, 15, 362. https://doi.org/10.1186/s12879-015-1071-0
Raya-CruzPayeras-CifreVentayol-AguilóDíaz-Antolín, M. A. L. P. (2019). Factors associated with readmission and mortality in adult patients with skin and soft tissue infections. International Journal of Dermatology, 58, 916924. https://doi.org/10.1111/ijd.14390
ShiXiaoZhangLiWangWuLin, C. Y. Q. Q. F. J. N. (2018). Efficacy and safety of cefazolin versus antistaphylococcal penicillins for the treatment of methicillin-susceptible Staphylococcus aureus bacteremia: A systematic review and meta-analysis. BMC Infectious Diseases, 18, 508. https://doi.org/10.1186/s12879-018-3418-9
CorlZebaCaffreyHermenauLopesPhillipsMerchantLevyLaPlante, K. A. F. A. R. M. V. G. R. C. M. M. K. L. (2020). Delay in antibiotic administration is associated with mortality among septic shock patients with Staphylococcus aureus bacteremia*. Critical Care Medicine, 48, 525532. https://doi.org/10.1097/CCM.0000000000004212
Petrovic FabijanLinHoMaddocksBen ZakourIredell, A. R. C. Y. J. S. N. L. J. R. (2020). Publisher correction: Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nature Microbiology, 5, 652652. https://doi.org/10.1038/s41564-020-0698-9
de LeeLencastreGarauKluytmansMalhotra-KumarPeschelHarbarth, A. S. H. J. J. S. A. S. (2018). Methicillin-resistant Staphylococcus aureus. Nature Reviews Disease Primers, 4, 18033. https://doi.org/10.1038/nrdp.2018.33
ChambersDeLeo, H. F. F. R. (2009). Waves of resistance: Staphylococcus aureus in the antibiotic era. Nature Reviews Microbiology, 7, 629641. https://doi.org/10.1038/nrmicro2200
FaoagaliThongGrant, J. L. M. L. D. (1992). Ten years’ experience with methicillin-resistant Staphylococcus aureus in a large Australian hospital. Journal of Hospital Infection, 20, 113119. https://doi.org/10.1016/0195-6701(92)90113-Z
FridkinHagemanMorrisonSanzaComo-SabettiJerniganHarrimanHarrisonLynfieldFarley, S. K. J. C. M. L. T. K. J. A. K. L. H. R. M. M. (2005). Methicillin-resistant Staphylococcus aureus disease in three communities. New England Journal of Medicine, 352, 14361444. https://doi.org/10.1056/NEJMoa043252
SievertRudrikPatelMcDonaldWilkinsHageman, D. M. J. T. J. B. L. C. M. J. J. C. (2008). Vancomycin-resistant Staphylococcus aureus in the United States, 2002–2006. Clinical Infectious Diseases, 46, 668674. https://doi.org/10.1086/527392
GardeteTomasz, S. A. (2014). Mechanisms of vancomycin resistance in Staphylococcus aureus. Journal of Clinical Investigation, 124, 28362840. https://doi.org/10.1172/JCI68834
Kurlenda, J., & Grinholc, M., (2012). Alternative therapies in Staphylococcus aureus diseases. Acta Biochimica Polonica. https://doi.org/10.18388/abp.2012_2136
van VlaeminckRaafatSurmannTimbermontNormannSellmanWamelMalhotra-Kumar, J. D. K. L. N. B. W. J. B. S. (2020). Exploring virulence factors and alternative therapies against Staphylococcus aureus pneumonia. Toxins, 12, 721. https://doi.org/10.3390/toxins12110721
CieplikDengCrielaardBuchallaHellwigAl-AhmadMaisch, F. D. W. W. E. A. T. (2018). Antimicrobial photodynamic therapy—What we know and what we don’t. Critical Reviews in Microbiology, 44, 571589. https://doi.org/10.1080/1040841X.2018.1467876
WainwrightMaischNonellPlaetzerAlmeidaTegosHamblin, M. T. S. K. A. G. P. M. R. (2017). Photoantimicrobials—Are we afraid of the light? The Lancet Infectious Diseases, 17, e49e55. https://doi.org/10.1016/S1473-3099(16)30268-7
WilsonPatterson, B. C. M. S. (2008). The physics, biophysics and technology of photodynamic therapy. Physics in Medicine and Biology, 53, R61R109. https://doi.org/10.1088/0031-9155/53/9/R01
NagataHiokaKimuraBatistelaTeradaGracianoBaessoHayacibara, J. Y. N. E. V. R. R. S. S. A. X. M. L. M. F. (2012). Antibacterial photodynamic therapy for dental caries: Evaluation of the photosensitizers used and light source properties. Photodiagnosis and Photodynamic Therapy, 9, 122131. https://doi.org/10.1016/j.pdpdt.2011.11.006
Maisch, T. (2015). Resistance in antimicrobial photodynamic inactivation of bacteria. Photochemical & Photobiological Sciences, 14, 15181526. https://doi.org/10.1039/C5PP00037H
da Silva Souza Campanholi, K., Jaski, J.M., da Silva Junior, R.C., Zanqui, A.B., Lazarin-Bidóia, D., da Silva, C.M., da Silva, E.A., Hioka, N., Nakamura, C.V., Cardozo-Filho, L., & Caetano, W., (2020). Photodamage on Staphylococcus aureus by natural extract from Tetragonia tetragonoides (Pall.) Kuntze: Clean method of extraction, characterization and photophysical studies. Journal of Photochemistry and Photobiology B: Biology, 203, 111763. https://doi.org/10.1016/j.jphotobiol.2019.111763
RinehDollaBallMaganaBremnerHamblinTegosKelso, A. N. K. A. R. M. J. B. M. R. G. P. M. J. (2017). Attaching the NorA Efflux pump inhibitor INF55 to methylene blue enhances antimicrobial photodynamic inactivation of methicillin-resistant Staphylococcus aureus in vitro and in vivo. ACS Infectious Diseases, 3, 756766. https://doi.org/10.1021/acsinfecdis.7b00095
dosda SantosGalantiniRibeiroMunizPereiraSilva, D. P. M. P. L. I. S. I. P. R. I. S. R. A. A. (2020). Photoactivated resveratrol controls intradermal infection by Staphylococcus aureus in mice: A pilot study. Lasers in Medical Science, 35, 13411347. https://doi.org/10.1007/s10103-019-02942-x
MaischEichnerSpäthGollmerKönigRegensburgerBäumler, T. A. A. A. B. J. W. (2014). Fast and effective photodynamic inactivation of multiresistant bacteria by cationic riboflavin derivatives. PLoS ONE, 9, e111792. https://doi.org/10.1371/journal.pone.0111792
LeitePaolilloParmesanoFontanaBagnato, D. P. V. F. R. T. N. C. R. V. S. (2014). Effects of photodynamic therapy with blue light and curcumin as mouth rinse for oral disinfection: a randomized controlled trial. Photomedicine and Laser Surgery, 32, 627632. https://doi.org/10.1089/pho.2014.3805
dada AlmeidaPereiraRodriguesLealMarquesRosaSilvaSilva, P. P. Í. S. K. B. L. S. A. S. L. P. F. C. R. A. A. (2017). Photodynamic therapy controls of Staphylococcus aureus intradermal infection in mice. Lasers in Medical Science, 32, 13371342. https://doi.org/10.1007/s10103-017-2247-1
BonifácioMartinsDavidLemosNevesAlmeidaPintoFaustinoCunha, D. C. B. C. M. G. P. M. S. A. D. C. G. A. M. A. F. Â. (2018). Photodynamic inactivation of Listeria innocua biofilms with food-grade photosensitizers: A curcumin-rich extract of Curcuma longa vs commercial curcumin. Journal of Applied Microbiology, 125, 282294. https://doi.org/10.1111/jam.13767
ZhangSunHaoWeiYinLiu, S.D.J.Y.-F.L.X. (2012). The effect of dietary soyabean isoflavones on photodynamic therapy in K562 leukemia cells. Journal of Photochemistry and Photobiology B: Biology, 110, 2833. https://doi.org/10.1016/j.jphotobiol.2012.02.006
SenapathyGeorgeAbrahamse, G. J. B. P. H. (2020). Exploring the role of phytochemicals as potent natural photosensitizers in photodynamic therapy. Anti-Cancer Agents in Medicinal Chemistry, 20, 18311844. https://doi.org/10.2174/1871520620666200703192127
CaoWangYuan, Y. H. Y. Q. (2004). Analysis of flavonoids and phenolic acid in propolis by capillary electrophoresis. Chromatographia, 59, 135140. https://doi.org/10.1365/s10337-003-0138-z
TeixeiraNegriMeiraMessageSalatino, É. W. G. R. M. S. A. D. A. (2005). Plant origin of green propolis: Bee behavior, plant anatomy and chemistry. Evidence-Based Complementary and Alternative Medicine, 2, 8592. https://doi.org/10.1093/ecam/neh055
ZabaiouFouacheTroussonBaronZellaguiLahouelLobaccaro, N.A.A.S.A.M.J.-M.A. (2017). Biological properties of propolis extracts: Something new from an ancient product. Chemistry and Physics of Lipids, 207, 214222. https://doi.org/10.1016/j.chemphyslip.2017.04.005
dosdeda SantosLopesMelo CaladoGonçalvesMunizRibeiroGalantiniSilva, D. P. D. P. S. S. P. C. V. I. P. R. I. S. M. P. L. R. A. A. (2019). Efficacy of photoactivated Myrciaria cauliflora extract against Staphylococcus aureus infection—A pilot study. Journal of Photochemistry and Photobiology B: Biology, 191, 107115. https://doi.org/10.1016/j.jphotobiol.2018.12.011
dosda SantosMunizQueirozPereiraSouzaLimaSousaRibeiroGalantiniMarquesFigueiredoSilva, D. P. I. P. R. A. F. I. S. M. P. A. L. J. L. R. O. I. S. M. P. L. L. M. T. B. R. A. A. (2018). Individual variation is the key to the development of a vaccine against Staphylococcus aureus: a comparative study between mice lineages. Brazilian Journal of Medical and Biological Research. https://doi.org/10.1590/1414-431x20186773
LiZhangJiangHouZhangZhouWang, K.Y.-Y.G.-Y.Y.-J.B.-W.Q.-X.X.-S. (2015). A bivalent cationic dye enabling selective photo-inactivation against Gram-negative bacteria. Chemical Communications, 51, 79237926. https://doi.org/10.1039/C5CC00174A
FangLiuZouZhaoWu, Y. T. Q. Y. F. (2016). Water-soluble benzylidene cyclopentanone based photosensitizers for in vitro and in vivo antimicrobial photodynamic therapy. Scientific Reports, 6, 28357. https://doi.org/10.1038/srep28357
WangCarverPhelan, M. J. J. V. V., et al. (2016). Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nature Biotechnology, 34, 828837. https://doi.org/10.1038/nbt.3597
AronGentryMcPhail, A. T. E. C. K. L., et al. (2020). Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nature Protocols, 15, 19541991. https://doi.org/10.1038/s41596-020-0317-5
Pilon, A., Vieira, N., Amaral, J., Monteiro, A., Silva, R., Spíndola, L., Castro-Gamboa, I., & Lopes, N. (2021). REDES MOLECULARES: UMA ANÁLISE SOBRE ANOTAÇÕES E DESCOBERTA DE NOVOS ATIVOS. Quim Nova. https://doi.org/10.21577/0100-4042.20170777
ShannonMarkielOzierBaligaWangRamageAminSchwikowskiIdeker, P. A. O. N. S. J. T. D. N. B. T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 24982504. https://doi.org/10.1101/gr.1239303
Comments (0)