Improving the Antibacterial Activity of Tryptophan-Containing Peptide Nanostructures Through Self-Assembly

Aaron P, Pedro L (2011) Fluorescence quenching of tryptophan and tryptophanyl dipeptides in solution. J Biophys Checm 2011:316–321

Google Scholar 

Andrushchenko VV, Vogel HJ, Prenner EJ (2006) Solvent-dependent structure of two tryptophan-rich antimicrobial peptides and their analogs studied by FTIR and CD spectroscopy. Biochim Biophys Acta 1758:1596–1608. https://doi.org/10.1016/j.bbamem.2006.07.013

Article  CAS  PubMed  Google Scholar 

Bagheri M, Nikolenko H, Arasteh S, Rezaei N, Behzadi M, Dathe M, Hancock RE (2020) Bacterial aggregation triggered by fibril forming tryptophan-rich sequences: effects of peptide side chain and membrane phospholipids. ACS Appl Mater Interfaces 12:26852–26867

Article  CAS  PubMed  Google Scholar 

Chan DI, Prenner EJ, Vogel HJ (2006) Tryptophan-and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta 1758:1184–1202. https://doi.org/10.1016/j.bbamem.2006.04.006

Article  CAS  PubMed  Google Scholar 

Chen Y, Barkley MD (1998) Toward understanding tryptophan fluorescence in proteins. Biochemistry 37:9976–9982

Article  CAS  PubMed  Google Scholar 

Chen C, Pan F, Zhang S, Hu J, Cao M, Wang J, Xu H, Zhao X, Lu JR (2010) Antibacterial activities of short designer peptides: a link between propensity for nanostructuring and capacity for membrane destabilization. Biomacromolecules 11:402–411

Article  CAS  PubMed  Google Scholar 

Coates IA, Hirst AR, Smith DK (2007) Optimizing biomimetic gelators constructed from amino acid building blocks. J Org Chem 72:3937–3940. https://doi.org/10.1021/jo070317i

Article  CAS  PubMed  Google Scholar 

De Araujo AD, Hoang HN, Lim J, Mak JY, Fairlie DP (2022) Tuning electrostatic and hydrophobic surfaces of aromatic rings to enhance membrane association and cell uptake of peptides. Angew Chem Int Ed 61:e202203995. https://doi.org/10.1002/anie.202203995

Article  CAS  Google Scholar 

Diaferia C, Rosa E, Gallo E, Smaldone G, Stornaiuolo M, Morelli G, Accardo A (2021) Self-supporting hydrogels based on Fmoc-derivatized cationic hexapeptides for potential biomedical applications. Biomedicines 9:678

Article  CAS  PubMed  PubMed Central  Google Scholar 

EUCAST, ESCMID (2003) Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infect 9:ix–xv. https://doi.org/10.1046/j.1469-0691.2003.00790.x

Article  Google Scholar 

Ghisaidoobe AB, Chung SJ (2014) Intrinsic tryptophan fluorescence in the detection and analysis of proteins: a focus on Förster resonance energy transfer techniques. Int J Mol Sci 15:22518–22538

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghosh M, Halperin-Sternfeld M, Grigoriants I, Lee J, Nam KT, Adler-Abramovich L (2017) Arginine-presenting peptide hydrogels decorated with hydroxyapatite as biomimetic scaffolds for bone regeneration. Biomacromol 18:3541–3550

Article  CAS  Google Scholar 

Gopal R, Seo CH, Song PI, Park Y (2013) Effect of repetitive lysine–tryptophan motifs on the bactericidal activity of antimicrobial peptides. Amino Acids 44:645–660

Article  CAS  PubMed  Google Scholar 

Greco I, Molchanova N, Holmedal E, Jenssen H, Hummel BD, Watts JL, Håkansson J, Hansen PR, Svenson J (2020) Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci Rep 10:1–13. https://doi.org/10.1038/s41598-020-69995-9

Article  CAS  Google Scholar 

Hamley IW (2017) Small bioactive peptides for biomaterials design and therapeutics. Chem Rev 117:14015–14041

Article  CAS  PubMed  Google Scholar 

Hamley IW (2023) Self-assembly, bioactivity, and nanomaterials applications of peptide conjugates with bulky aromatic terminal groups. ACS Appl Biol Mater 6:384–409

Article  CAS  Google Scholar 

He B, Ma S, Peng G, He D (2018) TAT-modified self-assembled cationic peptide nanoparticles as an efficient antibacterial agent. Nanomed Nanotechnol Med 14:365–372

Article  CAS  Google Scholar 

Israelachvili J (2011) Intermolecular and surface forces, 3rd edn. Elsevier, New York, pp 577–616

Google Scholar 

Jayawarna V, Ali M, Jowitt TA, Miller AF, Saiani A, Gough JE, Ulijn RV (2006) Nanostructured hydrogels for three-dimensional cell culture through self-assembly of fluorenylmethoxycarbonyl–dipeptides. Adv Mater 18:611–614

Article  CAS  Google Scholar 

Jayawarna V, Richardson SM, Hirst AR, Hodson NW, Saiani A, Gough JE, Ulijn RV (2009) Introducing chemical functionality in Fmoc-peptide gels for cell culture. Acta Biomater 5:934–943

Article  CAS  PubMed  Google Scholar 

Ji M, Parquette JR (2020) Enhanced stability of peptide nanofibers coated with a conformal layer of polydopamine. Chemistry 26:8572–8578

Article  CAS  PubMed  Google Scholar 

Ji M, Dawadi MB, LaSalla AR, Sun Y, Modarelli DA, Parquette JR (2017) Strategy for the co-assembly of co-axial nanotube-polymer hybrids. Langmuir 33:9129–9136

Article  CAS  PubMed  Google Scholar 

Ji M, Mason ML, Modarelli DA, Parquette JR (2019) Threading carbon nanotubes through a self-assembled nanotube. Chem Sci 10:7868–7877

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang Z, Vasil AI, Hale JD, Hancock REW, Vasil ML, Hodges RS (2008) Effects of Net Charge and the Number of Positively Charged Residues on the Biological Activity of Amphipathic α-Helical Cationic Antimicrobial Peptides. Biopolymers 90:369–383

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kagan BL, Jang H, Capone R, Arce FT, Ramachandran S, Lal R, Nussinov R (2012) Antimicrobial properties of amyloid peptides. Mol Pharm 9:708–717. https://doi.org/10.1021/mp200419b

Article  CAS  PubMed  Google Scholar 

Kolusheva S, Boyer L, Jelinek R (2000a) A colorimetric assay for rapid screening of antimicrobial peptides. Nat Biotechnol 18:225–227. https://doi.org/10.1038/72697

Article  CAS  PubMed  Google Scholar 

Kolusheva S, Shahal T, Jelinek R (2000b) Peptide− membrane interactions studied by a new phospholipid/polydiacetylene colorimetric vesicle assay. Biochemistry 39:15851–15859

Article  CAS  PubMed  Google Scholar 

Ladokhin AS, Selsted ME, White SH (1999) CD spectra of indolicidin antimicrobial peptides suggest turns, not polyproline helix. Biochemistry 38:12313–12319

Article  CAS  PubMed  Google Scholar 

Lee H-s, Lim Y-b (2020) Slow-motion self-assembly: access to intermediates with heterochiral peptides to gain control over alignment media development. ACS Nano 14:3344–3352

Article  CAS  PubMed  Google Scholar 

Lombardi L, Falanga A, Del Genio V, Galdiero S (2019) A new hope: self-assembling peptides with antimicrobial activity. Pharmaceutics 11:166

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lyu Y, Chen T, Shang L, Yang Y, Li Z, Zhu J, Shan A (2019) Design of Trp-rich dodecapeptides with broad-spectrum antimicrobial potency and membrane-disruptive mechanism. J Med Chem 62:6941–6957. https://doi.org/10.1021/acs.jmedchem.9b00288

Article  CAS  PubMed  Google Scholar 

Mahler A, Reches M, Rechter M, Cohen S, Gazit E (2006) Rigid, self-assembled hydrogel composed of a modified aromatic dipeptide. Adv Mater 18:1365–1370

Article  CAS  Google Scholar 

McCloskey AP, Gilmore BF, Laverty G (2014) Evolution of antimicrobial peptides to self-assembled peptides for biomaterial applications. Pathogens 3:791–821

Article  PubMed  PubMed Central  Google Scholar 

McCloskey AP, Draper ER, Gilmore BF, Laverty G (2017) Ultrashort self-assembling Fmoc-peptide gelators for anti-infective biomaterial applications. J Pept Sci 23:131–140

Article  CAS  PubMed  Google Scholar 

Mishra AK, Choi J, Moon E, Baek K-H (2018) Tryptophan-rich and proline-rich antimicrobial peptides. Molecules 23:815

Article  PubMed  PubMed Central  Google Scholar 

Nichols M, Kuljanin M, Nategholeslam M, Hoang T, Vafaei S, Tomberli B, Gray C, DeBruin L, Jelokhani-Niaraki M (2013) Dynamic turn conformation of a short tryptophan-rich cationic antimicrobial peptide and its interaction with phospholipid membranes. J Phys Chem B 117:14697–14708

Article  CAS  PubMed  Google Scholar 

Orbach R, Adler-Abramovich L, Zigerson S, Mironi-Harpaz I, Seliktar D, Gazit E (2009) Self-assembled Fmoc-peptides as a platform for the formation of nanostructures and hydrogels. Biomacromol 10:2646–2651

Article  CAS  Google Scholar 

Righetto GM, Lopes JLdS, Bispo PJM, André C, Souza JM, Andricopulo AD, Beltramini LM, Camargo ILBdC (2023) Antimicrobial activity of an Fmoc-Plantaricin 149 derivative peptide against multidrug-resistant bacteria. Antibiotics 12:391

Article  CAS 

Comments (0)

No login
gif