Amerikova M, Pencheva El-Tibi I, Maslarska V et al (2019) Antimicrobial activity, mechanism of action, and methods for stabilisation of defensins as new therapeutic agents. Biotechnol Biotechnol Equip 33:671–682. https://doi.org/10.1080/13102818.2019.1611385
Ayala–Calvillo E, Mojica–V�zquez L, Garc�a–Carranc� A, Gonz�lez–Maya L (2017) Wnt/β–catenin pathway activation and silencing of the APC gene in HPV–positive human cervical cancer–derived cells. Mol Med Rep. https://doi.org/10.3892/mmr.2017.7853
Article PubMed PubMed Central Google Scholar
Bohers E, Viailly P-J, Becker S et al (2018) Non-invasive monitoring of diffuse large B-cell lymphoma by cell-free DNA high-throughput targeted sequencing: analysis of a prospective cohort. Blood Cancer J 8:74. https://doi.org/10.1038/s41408-018-0111-6
Article PubMed PubMed Central Google Scholar
Bose D, Roy L, Chatterjee S (2022) Peptide therapeutics in the management of metastatic cancers. RSC Adv 12:21353–21373. https://doi.org/10.1039/D2RA02062A
Article CAS PubMed PubMed Central Google Scholar
Conibear AC, Schmid A, Kamalov M et al (2020) Recent advances in peptide-based approaches for cancer treatment. Curr Med Chem 27:1174–1205. https://doi.org/10.2174/0929867325666171123204851
Article CAS PubMed Google Scholar
Cragg GM, Pezzuto JM (2016) Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med Princ Pract 25:41–59. https://doi.org/10.1159/000443404
Dai L, Wang X, Bai T et al (2022) Identification of a novel cellular senescence-related signature for the prediction of prognosis and immunotherapy response in colon cancer. Front Genet. https://doi.org/10.3389/fgene.2022.961554
Article PubMed PubMed Central Google Scholar
Dall’Olio FG, Marabelle A, Caramella C et al (2022) Tumour burden and efficacy of immune-checkpoint inhibitors. Nat Rev Clin Oncol 19:75–90. https://doi.org/10.1038/s41571-021-00564-3
Article CAS PubMed Google Scholar
Das A, Deka D, Banerjee A et al (2022) A concise review on the role of natural and synthetically derived peptides in colorectal cancer. Curr Top Med Chem 22:2571–2588. https://doi.org/10.2174/1568026622666220516105049
Article CAS PubMed Google Scholar
Das A, Adhikari S, Deka D et al (2023) An updated review on recent advances in the usage of novel therapeutic peptides for breast cancer treatment. Int J Pept Res Ther 29:32. https://doi.org/10.1007/s10989-023-10503-8
Fennell LJ, Kane A, Liu C et al (2020) APC mutation marks an aggressive subtype of BRAF mutant colorectal cancers. Cancers (Basel) 12:1171. https://doi.org/10.3390/cancers12051171
Article CAS PubMed Google Scholar
Ghasemi T, Khalaj-Kondori M, Hosseinpour feizi MA, Asadi P (2021) Aberrant expression of lncRNAs SNHG6, TRPM2‐AS1, MIR4435‐2HG, and hypomethylation of TRPM2‐AS1 promoter in colorectal cancer. Cell Biol Int 45:2464–2478. https://doi.org/10.1002/cbin.11692
Article CAS PubMed Google Scholar
Gorroño-Etxebarria I, Aguirre U, Sanchez S et al (2019) Wnt-11 as a potential prognostic biomarker and therapeutic target in colorectal cancer. Cancers (Basel) 11:908. https://doi.org/10.3390/cancers11070908
Article CAS PubMed Google Scholar
Graf MR, Apte S, Terzo E et al (2023) Novel read through agent: ZKN-0013 demonstrates efficacy in APCmin model of familial adenomatous polyposis. J Mol Med 101:375–385. https://doi.org/10.1007/s00109-023-02291-x
Article CAS PubMed Google Scholar
Hadwan MH, Abed HN (2016) Data supporting the spectrophotometric method for the estimation of catalase activity. Data Br 6:194–199. https://doi.org/10.1016/j.dib.2015.12.012
Haines LR, Hancock REW, Pearson TW (2003) Cationic antimicrobial peptide killing of african trypanosomes and Sodalis glossinidius, a bacterial symbiont of the insect vector of sleeping sickness. Vector-Borne Zoonotic Dis 3:175–186. https://doi.org/10.1089/153036603322662165
Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta-Biomembr 1778:357–375. https://doi.org/10.1016/j.bbamem.2007.11.008
Hossain MS, Karuniawati H, Jairoun AA et al (2022) Colorectal cancer: a review of carcinogenesis, global epidemiology, current challenges, risk factors, preventive and treatment strategies. Cancers (Basel) 14:1732. https://doi.org/10.3390/cancers14071732
Jung G, Hernández-Illán E, Moreira L et al (2020) Epigenetics of colorectal cancer: biomarker and therapeutic potential. Nat Rev Gastroenterol Hepatol 17:111–130. https://doi.org/10.1038/s41575-019-0230-y
Article PubMed PubMed Central Google Scholar
Karami Fath M, Babakhaniyan K, Zokaei M et al (2022) Anticancer peptide-based therapeutic strategies in solid tumors. Cell Mol Biol Lett 27:33. https://doi.org/10.1186/s11658-022-00332-w
Article CAS PubMed PubMed Central Google Scholar
Kawazu M, Ueno T, Saeki K et al (2022) HLA class I analysis provides insight into the genetic and epigenetic background of immune evasion in colorectal cancer with high microsatellite instability. Gastroenterology 162:799–812. https://doi.org/10.1053/j.gastro.2021.10.010
Article CAS PubMed Google Scholar
Khodapasand E, Jafarzadeh N, Farrokhi F et al (2015) Is Bax/Bcl-2 ratio considered as a prognostic marker with age and tumor location in colorectal cancer? Iran Biomed J 19:69–75. https://doi.org/10.6091/ibj.1366.2015
Article PubMed PubMed Central Google Scholar
Lath A, Santal AR, Kaur N et al (2023) Anticancer peptides: their current trends in the development of peptide-based therapy and anti-tumor drugs. Biotechnol Genet Eng Rev 39:45–84. https://doi.org/10.1080/02648725.2022.2082157
Article CAS PubMed Google Scholar
Lee EK, Kim Y-C, Nan YH, Shin SY (2011) Cell selectivity, mechanism of action and LPS-neutralizing activity of bovine myeloid antimicrobial peptide-18 (BMAP-18) and its analogs. Peptides 32:1123–1130. https://doi.org/10.1016/j.peptides.2011.03.024
Article CAS PubMed Google Scholar
Li X-L (2015) p53 mutations in colorectal cancer- molecular pathogenesis and pharmacological reactivation. World J Gastroenterol 21:84. https://doi.org/10.3748/wjg.v21.i1.84
Article CAS PubMed PubMed Central Google Scholar
Li S-A, Lee W-H, Zhang Y (2012) Efficacy of OH-CATH30 and its analogs against drug-resistant bacteria in vitro and in mouse models. Antimicrob Agents Chemother 56:3309–3317. https://doi.org/10.1128/AAC.06304-11
Article PubMed PubMed Central Google Scholar
Li G, Wang Z, Xu J et al (2016) The prognostic value of lactate dehydrogenase levels in colorectal cancer: a meta-analysis. BMC Cancer 16:249. https://doi.org/10.1186/s12885-016-2276-3
Article CAS PubMed PubMed Central Google Scholar
Liang S, Mao Y, Liao M et al (2020) Gut microbiome associated with APC gene mutation in patients with intestinal adenomatous polyps. Int J Biol Sci 16:135–146. https://doi.org/10.7150/ijbs.37399
Article CAS PubMed PubMed Central Google Scholar
Lin J-T, Wang J-Y, Chen M-K et al (2013) Colon cancer mesenchymal stem cells modulate the tumorigenicity of colon cancer through interleukin 6. Exp Cell Res 319:2216–2229. https://doi.org/10.1016/j.yexcr.2013.06.003
Article CAS PubMed Google Scholar
Liu P, Liang B, Liu M et al (2020) Oncogenic mutations in Armadillo repeats 5 and 6 of β-Catenin reduce binding to APC, increasing signaling and transcription of target genes. Gastroenterology 158:1029–1043e10. https://doi.org/10.1053/j.gastro.2019.11.302
Article CAS PubMed Google Scholar
McGwire BS, Olson CL, Tack BF, Engman DM (2003) Killing of african trypanosomes by antimicrobial peptides. J Infect Dis 188:146–152. https://doi.org/10.1086/375747
Moshawih S, Lim AF, Ardianto C et al (2022) Target-based small molecule drug discovery for colorectal cancer: a review of molecular pathways and in silico studies. Biomolecules 12:878. https://doi.org/10.3390/biom12070878
Article CAS PubMed PubMed Central Google Scholar
Nakamura T, Hamada F, Ishidate T et al (1998) Axin, an inhibitor of the wnt signalling pathway, interacts with β-catenin, GSK-3β and APC and reduces the β-catenin level. Genes Cells 3:395–403. https://doi.org/10.1046/j.1365-2443.1998.00198.x
Article CAS PubMed Google Scholar
Nakayama M, Oshima M (2019) Mutant p53 in colon cancer. J Mol Cell Biol 11:267–276. https://doi.org/10.1093/jmcb/mjy075
Comments (0)