Bioactive Peptides from Microalgae and Cyanobacteria and Their Possible Mechanisms of Action

Aaghaz S, Sharma K, Maurya IK et al (2023) Synthetic amino acids-based short amphipathic peptides exhibit antifungal activity by targeting cell membrane disruption. Drug Dev Res 84:514–526. https://doi.org/10.1002/ddr.22041

Article  CAS  PubMed  Google Scholar 

Abdalrahman K, Naz Dizeci GÜNEŞM NS, et al (2017) Screening effects of methanol extracts of Diplotaxis tenuifolia and Reseda lutea on enzymatic antioxidant defense systems and aldose reductase activity. Turk J Pharm Sci 15:97–102. https://doi.org/10.4274/tjps.82473

Article  CAS  Google Scholar 

Abhilasha K, Marathe G (2021) Bacterial lipoproteins in sepsis. Immunobiology 226:152128. https://doi.org/10.1016/j.imbio.2021.152128

Article  CAS  Google Scholar 

Afify AE-MMR, El Baroty GS, El Baz FK et al (2018) Scenedesmus obliquus: antioxidant and antiviral activity of proteins hydrolyzed by three enzymes. J Genet Eng Biotechnol 16:399–408. https://doi.org/10.1016/j.jgeb.2018.01.002

Article  Google Scholar 

Aguiar T, Neto N, Freitas C et al (2022) Antifungal potential of synthetic peptides against Cryptococcus neoformans: mechanism of action studies reveal synthetic peptides induce membrane–pore formation, DNA degradation, and apoptosis. Pharmaceutics 14:1678. https://doi.org/10.3390/pharmaceutics14081678

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahmed S, Alam W, Aschner M et al (2023) Marine cyanobacterial peptides in neuroblastoma: search for better therapeutic options. Cancers (Basel) 15:2515. https://doi.org/10.3390/cancers15092515

Article  CAS  PubMed  Google Scholar 

Ali SS, Al-Tohamy R, Al-Zahrani M et al (2025) Advancements and challenges in microalgal protein production: a sustainable alternative to conventional protein sources. Microb Cell Fact 24(1):61. https://doi.org/10.1186/s12934-025-02262-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alzaydi A, Barbhuiya RI, Routray W et al (2023) Bioactive peptides: synthesis, applications, and associated challenges. Food Bioeng 2:273–290. https://doi.org/10.1002/fbe2.12057

Article  CAS  Google Scholar 

Amorim AP, De, Silva GH, Da, Brandão RMP et al (2022) Algae as a source of peptides inhibitors of the angiotensin-converting enzyme: a systematic review. Acad Bras Cienc. https://doi.org/10.1590/0001-3765202220201636

Article  Google Scholar 

Arif JM, Farooqui A, Siddiqui MH et al (2012) Chap. 5—novel bioactive peptides from cyanobacteria: functional, biochemical, and biomedical significance. In: Atta-ur-Rahman (ed) Bioactive natural products. Elsevier, pp 111–161

Ashraf A, Guo Y, Yang T et al (2025) Microalgae-derived peptides: exploring bioactivities and functional food innovations. J Agric Food Chem 73:1000–1013. https://doi.org/10.1021/acs.jafc.4c06800

Article  CAS  PubMed  Google Scholar 

Ayswaria R, Vijayan J, Nathan VK (2023) Antimicrobial peptides derived from microalgae for combating antibiotic resistance: current status and prospects. Cell Biochem Funct 41:142–151. https://doi.org/10.1002/cbf.3779

Article  CAS  PubMed  Google Scholar 

Babini E, Tagliazucchi D, Martini S et al (2017) LC-ESI-QTOF-MS identification of novel antioxidant peptides obtained by enzymatic and microbial hydrolysis of vegetable proteins. Food Chem 228:186–196. https://doi.org/10.1016/j.foodchem.2017.01.143

Article  CAS  PubMed  Google Scholar 

Barboza G, Gorlach-Lira K, Sassi C, Sassi R (2017) Microcystins production and antibacterial activity of cyanobacterial strains of Synechocystis, Synechococcus and Romeria isolated from water and coral reef organisms of Brazilian coast. Rev Biol Trop 65:890. https://doi.org/10.15517/rbt.v65i3.29437

Article  Google Scholar 

Bargeman G, Koops G-H, Houwing J et al (2002) The development of electro-membrane filtration for the isolation of bioactive peptides: the effect of membrane selection and operating parameters on the transport rate. Desalination 149:369–374. https://doi.org/10.1016/S0011-9164(02)00824-X

Article  CAS  Google Scholar 

Bauso L, Fauci V, Munaò S et al (2024) Biological activity of natural and synthetic peptides as anticancer agents. Int J Mol Sci 25:7264. https://doi.org/10.3390/ijms25137264

Article  CAS  PubMed  PubMed Central  Google Scholar 

Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25:207–210. https://doi.org/10.1016/j.biotechadv.2006.11.002

Article  CAS  PubMed  Google Scholar 

Bertelsen M, Lacey MM, Nichol T, Miller K (2023) Mechanistic insight into the early stages of toroidal pore formation by the antimicrobial peptide Smp24. Pharmaceutics 15:2399. https://doi.org/10.3390/pharmaceutics15102399

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bleakley S, Hayes M (2017) Algal proteins: extraction, application, and challenges concerning production. Foods 6(5):33. https://doi.org/10.3390/foods6050033

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bouyahya A, Bakrim S, Chamkhi I et al (2024) Bioactive substances of cyanobacteria and microalgae: sources, metabolism, and anticancer mechanism insights. Biomed Pharmacother 170:115989. https://doi.org/10.1016/j.biopha.2023.115989

Article  CAS  PubMed  Google Scholar 

Burja AM, Banaigs B, Abou-Mansour E et al (2001) Marine cyanobacteria—a prolific source of natural products. Tetrahedron 57:9347–9377. https://doi.org/10.1016/S0040-4020(01)00931-0

Cao D, Lv X, Xu X et al (2017) Purification and identification of a novel ACE inhibitory peptide from marine alga Gracilariopsis lemaneiformis protein hydrolysate. Eur Food Res Technol 243:1829–1837. https://doi.org/10.1007/s00217-017-2886-2

Article  CAS  Google Scholar 

Capriotti AL, Caruso G, Cavaliere C et al (2015) Identification of potential bioactive peptides generated by simulated gastrointestinal digestion of soybean seeds and soy milk proteins. J Food Compos Anal 44:205–213. https://doi.org/10.1016/j.jfca.2015.08.007

Article  CAS  Google Scholar 

Carrizzo A, Conte GM, Sommella E et al (2019) Novel potent decameric peptide of Spirulina platensis reduces blood pressure levels through a PI3K/AKT/eNOS-dependent mechanism. Hypertension 73:449–457. https://doi.org/10.1161/HYPERTENSIONAHA.118.11801

Article  CAS  PubMed  Google Scholar 

Carrizalez-López C, González-Ortega O, Ochoa-Méndez CE et al (2018) Expression of multiple antihypertensive peptides as a fusion protein in the chloroplast of Chlamydomonas reinhardtii. J Appl Phycol 30:1701–1709. https://doi.org/10.1007/s10811-017-1339-4

Carullo D, Pataro G, Donsì F, Ferrari G (2020) Pulsed electric fields-assisted extraction of valuable compounds from Arthrospira platensis: effect of pulse polarity and mild heating. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2020.551272

Challis GL (2008) Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology (N Y) 154:1555–1569. https://doi.org/10.1099/mic.0.2008/018523-0

Article  CAS  Google Scholar 

Chen J, Tan L, Li C et al (2020) Mechanism analysis of a novel angiotensin-I-converting enzyme inhibitory peptide from Isochrysis zhanjiangensis microalgae for suppressing vascular injury in human umbilical vein endothelial cells. J Agric Food Chem 68:4411–4423. https://doi.org/10.1021/acs.jafc.0c00925

Article  CAS  PubMed  Google Scholar 

Chen EH-L, Wang C-H, Liao Y-T et al (2023a) Visualizing the membrane disruption action of antimicrobial peptides by cryo-electron tomography. Nat Commun 14:5464. https://doi.org/10.1038/s41467-023-41156-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen S-Y, Chang C-K, Lan C-Y (2023b) Antimicrobial peptide LL-37 disrupts plasma membrane and calcium homeostasis in Candida albicans via the Rim101 pathway. Microbiol Spectr. https://doi.org/10.1128/spectrum.02551-23

Article  PubMed  PubMed Central  Google Scholar 

Cock IE, Cheesman MJ (2023) A review of the antimicrobial properties of cyanobacterial natural products. Molecules 28:7127. https://doi.org/10.3390/molecules28207127

Article  CAS  PubMed  PubMed Central  Google Scholar 

Currie SM, Findlay EG, McHugh BJ et al (2013) The human cathelicidin LL-37 has antiviral activity against respiratory syncytial virus. PLoS ONE 8:e73659. https://doi.org/10.1371/journal.pone.0073659

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif