In Vitro Biological Evaluation and Mechanism of Action of Peptoid Analogue Based on Cationic, Amphipathic Peptide A-12

Amblard M, Fehrentz JA, Martinez J, Subra G (2006) Methods and protocols of modern solid phase peptide synthesis. Mol Biotechnol 33:239–254. https://doi.org/10.1385/MB:33:3:239

Article  CAS  PubMed  Google Scholar 

Antosova Z, Mackova M, Kral V, Macek T (2009) Therapeutic application of peptides and proteins: parenteral forever? Trends Biotechnol 27(11):628–635. https://doi.org/10.1016/j.tibtech.2009.07.009

Article  CAS  PubMed  Google Scholar 

Arcidiacono S, Soares JW, Meehan AM, Marek P, Kirby R (2009) Membrane permeability and antimicrobial kinetics of cecropin P1 against Escherichia coli. J Pep Sci 15(6):398–403. https://doi.org/10.1002/psc.1125

Article  CAS  Google Scholar 

Bahar AA, Ren D (2013) Antimicrobial Peptides. Pharmaceuticals 6(12):1543–1575. https://doi.org/10.3390/ph6121543

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250. https://doi.org/10.1038/nrmicro1098

Article  CAS  PubMed  Google Scholar 

Chen YQ, Min C, Sang M, Han YY, Ma X, Xue XQ, Zhang SQ (2010) A cationic amphiphilic peptide ABP-CM4 exhibits selective cytotoxicity against leukemia cells. Peptides 31(8):1504–1510. https://doi.org/10.1016/j.peptides.2010.05.010

Article  CAS  PubMed  Google Scholar 

Chongsiriwatana NP, Patch JA, Czyzewski AM, Dohm MT, Ivankin A, Gidalevitz D, Barron AE (2008) Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides. Proc Natl Acad Sci 105(8):2794–2799. https://doi.org/10.1073/pnas.0708254105

Article  PubMed  PubMed Central  Google Scholar 

Chudobova D, Dostalova S, Blazkova I, Michalek P, Ruttkay-Nedecky B, Sklenar M, Nejdl L, Kudr J, Gumulec J, Tmejova K, Konecna M, Vaculovicova M, Hynek D, Masarik M, Kynicky J, Kizek R, Adam V (2014) Effect of ampicillin, streptomycin, penicillin and tetracycline on metal resistant and non-resistant Staphylococcus aureus. Int J Environ Res Public Health 11(3):3233–3255. https://doi.org/10.3390/ijerph110303233

Article  CAS  PubMed  PubMed Central  Google Scholar 

CLSI (2012) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard—Ninth Edition. CLSI document M07-A9. Clinical and Laboratory Standards Institute, Wayne, PA

da Silva JA, Teschke O (2003) Effects of the antimicrobial peptide PGLa on live Escherichia coli. Biochim Biophys Acta 1643(1–3):95–103. https://doi.org/10.1016/j.bbamcr.2003.10.001

Article  CAS  PubMed  Google Scholar 

Dewangan RP, Bisht GS, Singh VP, Yar MS, Pasha S (2018) Design and synthesis of cell selective α/β-diastereomeric peptidomimetic with potent in vivo antibacterial activity against methicillin resistant S. aureus. Bioorg Chem 76:538–547. https://doi.org/10.1016/j.bioorg.2017.12.020

Article  CAS  PubMed  Google Scholar 

Dohm MT, Kapoor R, Barron AE (2011) Peptoids: bio-inspired polymers as potential pharmaceuticals. Curr Pharm Des 17(25):2732–2747. https://doi.org/10.2174/138161211797416066

Article  CAS  PubMed  Google Scholar 

Duong L, Gross SP, Siryaporn A (2021) Developing antimicrobial synergy with AMPs. Front Med Technol 3:640981. https://doi.org/10.3389/fmedt.2021.640981

Article  PubMed  PubMed Central  Google Scholar 

Erdem Buyukkiraz M, Kesmen Z (2022) Antimicrobial peptides (AMPs): a promising class of antimicrobial compounds. J Appl Microbiol 132(3):1573–1596. https://doi.org/10.1111/jam.15314

Article  CAS  PubMed  Google Scholar 

Feng Q, Huang Y, Chen M, Li G, Chen Y (2015) Functional synergy of α-helical antimicrobial peptides and traditional antibiotics against Gram-negative and gram-positive bacteria in vitro and in vivo. Eur J Clin Microbiol Infect Dis 34:197–204. https://doi.org/10.1007/s10096-014-2219-3

Article  CAS  PubMed  Google Scholar 

Gopal R, Kim YG, Lee JH, Lee SK, Chae JD, Son BK, Park Y (2014) Synergistic effects and antibiofilm properties of chimeric peptides against multidrug-resistant Acinetobacter baumannii strains. Antimicrob Agents Chemother 58(3):1622–1629. https://doi.org/10.1128/AAC.02473-13

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hale JD, Hancock RE (2007) Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti-Infect Ther 5(6):951–959. https://doi.org/10.1586/14787210.5.6.951

Article  CAS  PubMed  Google Scholar 

Jahangiri A, Neshani A, Mirhosseini SA, Ghazvini K, Zare H, Sedighian H (2021) Synergistic effect of two antimicrobial peptides, Nisin and P10 with conventional antibiotics against extensively drug-resistant Acinetobacter baumannii and colistin-resistant Pseudomonas aeruginosa isolates. Microb Pathog 150:104700. https://doi.org/10.1016/j.micpath.2020.104700

Article  CAS  PubMed  Google Scholar 

Kang HK, Kim C, Seo CH, Park Y (2017) The therapeutic applications of antimicrobial peptides (AMPs): a patent review. J Microbiol 55(1):1–12. https://doi.org/10.1007/s12275-017-6452-1

Article  CAS  PubMed  Google Scholar 

Khara JS, Mojsoska B, Mukherjee D, Langford PR, Robertson BD, Jenssen H, Newton SM (2020) Ultra-short antimicrobial peptoids show propensity for membrane activity against multi-drug resistant mycobacterium tuberculosis. Front Microbiol 11:417. https://doi.org/10.3389/fmicb.2020.00417

Article  PubMed  PubMed Central  Google Scholar 

Lee J, Kang D, Choi J, Huang W, Wadman M, Barron AE, Seo J (2018) Effect of side chain hydrophobicity and cationic charge on antimicrobial activity and cytotoxicity of helical peptoids. Bioorg Med Chem Lett 28(2):170–173. https://doi.org/10.1016/j.bmcl.2017.11.034

Article  CAS  PubMed  Google Scholar 

Li RK, Rinaldi MG (1999) In vitro antifungal activity of nikkomycin Z in combination with fluconazole or itraconazole. Antimicrob Agents Chemother 43(6):1401–1405. https://doi.org/10.1128/AAC.43.6.140

Article  CAS  PubMed  PubMed Central  Google Scholar 

Malanovic N, Lohner K (2016) Antimicrobial peptides targeting gram-positive bacteria. Pharmaceuticals 9(3):59. https://doi.org/10.3390/ph9030059

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marcos JF, Gandia M (2009) Antimicrobial peptides: to membranes and beyond. Expert Opin Drug Discov 4(6):659–671. https://doi.org/10.1517/17460440902992888

Article  CAS  PubMed  Google Scholar 

Matsuzaki K (1999) Why and how are peptide–lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta (BBA)-Biomembr 1462(1–2):1–10. https://doi.org/10.1016/S0005-2736(99)00197-2

Article  CAS  Google Scholar 

Matsuzaki K (2009) Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta (BBA)-Biomembr 1788(8):1687–1692. https://doi.org/10.1016/j.bbamem.2008.09.013

Article  CAS  Google Scholar 

Mojsoska B, Zuckermann RN, Jenssen H (2015) Structure-activity relationship study of novel peptoids that mimic the structure of antimicrobial peptides. Antimicrob Agents Chemother 59(7):4112–4120. https://doi.org/10.1128/AAC.00237

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mojsoska B, Carretero G, Larsen S, Mateiu RV, Jenssen H (2017) Peptoids successfully inhibit the growth of Gram- negative E. coli causing substantial membrane damage. Sci Rep 7(1):1–12. https://doi.org/10.1038/srep42332

Article  CAS  Google Scholar 

Morici P, Florio W, Rizzato C, Ghelardi E, Tavanti A, Rossolini GM, Lupetti A (2017) Synergistic activity of synthetic N-terminal peptide of human lactoferrin in combination with various antibiotics against carbapenem-resistant Klebsiella pneumoniae strains. Eur J Clin Microbiol Infect Dis 36(10):1739–1748. https://doi.org/10.1007/s10096-017-2987-7

Article  CAS  PubMed  Google Scholar 

Ning Y, Yan A, Yang K, Wang Z, Li X, Jia Y (2017) Antibacterial activity of phenyllactic acid against Listeria monocytogenes and Escherichia coli by dual mechanisms. Food Chem 228:533–540. https://doi.org/10.1016/j.foodchem.2017.01.112

Article  CAS  PubMed  Google Scholar 

Patch JA, Barron AE (2002) Mimicry of bioactive peptides via non-natural, sequence-specific peptidomimetic oligomers. Curr Opin Chem Biol 6(6):872–877. https://doi.org/10.1016/S1367-5931(02)00385-X

Article  CAS  PubMed  Google Scholar 

Peterson E, Kaur P (2018) Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front Microbiol 9:2928. https://doi.org/10.3389/fmicb.2018.02928

Article  PubMed  PubMed Central  Google Scholar 

Pletzer D, Mansour SC, Hancock RE (2018) Synergy between conventional antibiotics and anti-biofilm peptides in a murine, sub-cutaneous abscess model caused by recalcitrant ESKAPE pathogens. PloS Pathog 14(6):e1007084. https://doi.org/10.1371/journal.ppat.1007084

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif