Amblard M, Fehrentz JA, Martinez J, Subra G (2006) Methods and protocols of modern solid phase peptide synthesis. Mol Biotechnol 33:239–254. https://doi.org/10.1385/MB:33:3:239
Article CAS PubMed Google Scholar
Antosova Z, Mackova M, Kral V, Macek T (2009) Therapeutic application of peptides and proteins: parenteral forever? Trends Biotechnol 27(11):628–635. https://doi.org/10.1016/j.tibtech.2009.07.009
Article CAS PubMed Google Scholar
Arcidiacono S, Soares JW, Meehan AM, Marek P, Kirby R (2009) Membrane permeability and antimicrobial kinetics of cecropin P1 against Escherichia coli. J Pep Sci 15(6):398–403. https://doi.org/10.1002/psc.1125
Bahar AA, Ren D (2013) Antimicrobial Peptides. Pharmaceuticals 6(12):1543–1575. https://doi.org/10.3390/ph6121543
Article CAS PubMed PubMed Central Google Scholar
Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250. https://doi.org/10.1038/nrmicro1098
Article CAS PubMed Google Scholar
Chen YQ, Min C, Sang M, Han YY, Ma X, Xue XQ, Zhang SQ (2010) A cationic amphiphilic peptide ABP-CM4 exhibits selective cytotoxicity against leukemia cells. Peptides 31(8):1504–1510. https://doi.org/10.1016/j.peptides.2010.05.010
Article CAS PubMed Google Scholar
Chongsiriwatana NP, Patch JA, Czyzewski AM, Dohm MT, Ivankin A, Gidalevitz D, Barron AE (2008) Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides. Proc Natl Acad Sci 105(8):2794–2799. https://doi.org/10.1073/pnas.0708254105
Article PubMed PubMed Central Google Scholar
Chudobova D, Dostalova S, Blazkova I, Michalek P, Ruttkay-Nedecky B, Sklenar M, Nejdl L, Kudr J, Gumulec J, Tmejova K, Konecna M, Vaculovicova M, Hynek D, Masarik M, Kynicky J, Kizek R, Adam V (2014) Effect of ampicillin, streptomycin, penicillin and tetracycline on metal resistant and non-resistant Staphylococcus aureus. Int J Environ Res Public Health 11(3):3233–3255. https://doi.org/10.3390/ijerph110303233
Article CAS PubMed PubMed Central Google Scholar
CLSI (2012) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard—Ninth Edition. CLSI document M07-A9. Clinical and Laboratory Standards Institute, Wayne, PA
da Silva JA, Teschke O (2003) Effects of the antimicrobial peptide PGLa on live Escherichia coli. Biochim Biophys Acta 1643(1–3):95–103. https://doi.org/10.1016/j.bbamcr.2003.10.001
Article CAS PubMed Google Scholar
Dewangan RP, Bisht GS, Singh VP, Yar MS, Pasha S (2018) Design and synthesis of cell selective α/β-diastereomeric peptidomimetic with potent in vivo antibacterial activity against methicillin resistant S. aureus. Bioorg Chem 76:538–547. https://doi.org/10.1016/j.bioorg.2017.12.020
Article CAS PubMed Google Scholar
Dohm MT, Kapoor R, Barron AE (2011) Peptoids: bio-inspired polymers as potential pharmaceuticals. Curr Pharm Des 17(25):2732–2747. https://doi.org/10.2174/138161211797416066
Article CAS PubMed Google Scholar
Duong L, Gross SP, Siryaporn A (2021) Developing antimicrobial synergy with AMPs. Front Med Technol 3:640981. https://doi.org/10.3389/fmedt.2021.640981
Article PubMed PubMed Central Google Scholar
Erdem Buyukkiraz M, Kesmen Z (2022) Antimicrobial peptides (AMPs): a promising class of antimicrobial compounds. J Appl Microbiol 132(3):1573–1596. https://doi.org/10.1111/jam.15314
Article CAS PubMed Google Scholar
Feng Q, Huang Y, Chen M, Li G, Chen Y (2015) Functional synergy of α-helical antimicrobial peptides and traditional antibiotics against Gram-negative and gram-positive bacteria in vitro and in vivo. Eur J Clin Microbiol Infect Dis 34:197–204. https://doi.org/10.1007/s10096-014-2219-3
Article CAS PubMed Google Scholar
Gopal R, Kim YG, Lee JH, Lee SK, Chae JD, Son BK, Park Y (2014) Synergistic effects and antibiofilm properties of chimeric peptides against multidrug-resistant Acinetobacter baumannii strains. Antimicrob Agents Chemother 58(3):1622–1629. https://doi.org/10.1128/AAC.02473-13
Article CAS PubMed PubMed Central Google Scholar
Hale JD, Hancock RE (2007) Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti-Infect Ther 5(6):951–959. https://doi.org/10.1586/14787210.5.6.951
Article CAS PubMed Google Scholar
Jahangiri A, Neshani A, Mirhosseini SA, Ghazvini K, Zare H, Sedighian H (2021) Synergistic effect of two antimicrobial peptides, Nisin and P10 with conventional antibiotics against extensively drug-resistant Acinetobacter baumannii and colistin-resistant Pseudomonas aeruginosa isolates. Microb Pathog 150:104700. https://doi.org/10.1016/j.micpath.2020.104700
Article CAS PubMed Google Scholar
Kang HK, Kim C, Seo CH, Park Y (2017) The therapeutic applications of antimicrobial peptides (AMPs): a patent review. J Microbiol 55(1):1–12. https://doi.org/10.1007/s12275-017-6452-1
Article CAS PubMed Google Scholar
Khara JS, Mojsoska B, Mukherjee D, Langford PR, Robertson BD, Jenssen H, Newton SM (2020) Ultra-short antimicrobial peptoids show propensity for membrane activity against multi-drug resistant mycobacterium tuberculosis. Front Microbiol 11:417. https://doi.org/10.3389/fmicb.2020.00417
Article PubMed PubMed Central Google Scholar
Lee J, Kang D, Choi J, Huang W, Wadman M, Barron AE, Seo J (2018) Effect of side chain hydrophobicity and cationic charge on antimicrobial activity and cytotoxicity of helical peptoids. Bioorg Med Chem Lett 28(2):170–173. https://doi.org/10.1016/j.bmcl.2017.11.034
Article CAS PubMed Google Scholar
Li RK, Rinaldi MG (1999) In vitro antifungal activity of nikkomycin Z in combination with fluconazole or itraconazole. Antimicrob Agents Chemother 43(6):1401–1405. https://doi.org/10.1128/AAC.43.6.140
Article CAS PubMed PubMed Central Google Scholar
Malanovic N, Lohner K (2016) Antimicrobial peptides targeting gram-positive bacteria. Pharmaceuticals 9(3):59. https://doi.org/10.3390/ph9030059
Article CAS PubMed PubMed Central Google Scholar
Marcos JF, Gandia M (2009) Antimicrobial peptides: to membranes and beyond. Expert Opin Drug Discov 4(6):659–671. https://doi.org/10.1517/17460440902992888
Article CAS PubMed Google Scholar
Matsuzaki K (1999) Why and how are peptide–lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta (BBA)-Biomembr 1462(1–2):1–10. https://doi.org/10.1016/S0005-2736(99)00197-2
Matsuzaki K (2009) Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta (BBA)-Biomembr 1788(8):1687–1692. https://doi.org/10.1016/j.bbamem.2008.09.013
Mojsoska B, Zuckermann RN, Jenssen H (2015) Structure-activity relationship study of novel peptoids that mimic the structure of antimicrobial peptides. Antimicrob Agents Chemother 59(7):4112–4120. https://doi.org/10.1128/AAC.00237
Article CAS PubMed PubMed Central Google Scholar
Mojsoska B, Carretero G, Larsen S, Mateiu RV, Jenssen H (2017) Peptoids successfully inhibit the growth of Gram- negative E. coli causing substantial membrane damage. Sci Rep 7(1):1–12. https://doi.org/10.1038/srep42332
Morici P, Florio W, Rizzato C, Ghelardi E, Tavanti A, Rossolini GM, Lupetti A (2017) Synergistic activity of synthetic N-terminal peptide of human lactoferrin in combination with various antibiotics against carbapenem-resistant Klebsiella pneumoniae strains. Eur J Clin Microbiol Infect Dis 36(10):1739–1748. https://doi.org/10.1007/s10096-017-2987-7
Article CAS PubMed Google Scholar
Ning Y, Yan A, Yang K, Wang Z, Li X, Jia Y (2017) Antibacterial activity of phenyllactic acid against Listeria monocytogenes and Escherichia coli by dual mechanisms. Food Chem 228:533–540. https://doi.org/10.1016/j.foodchem.2017.01.112
Article CAS PubMed Google Scholar
Patch JA, Barron AE (2002) Mimicry of bioactive peptides via non-natural, sequence-specific peptidomimetic oligomers. Curr Opin Chem Biol 6(6):872–877. https://doi.org/10.1016/S1367-5931(02)00385-X
Article CAS PubMed Google Scholar
Peterson E, Kaur P (2018) Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front Microbiol 9:2928. https://doi.org/10.3389/fmicb.2018.02928
Article PubMed PubMed Central Google Scholar
Pletzer D, Mansour SC, Hancock RE (2018) Synergy between conventional antibiotics and anti-biofilm peptides in a murine, sub-cutaneous abscess model caused by recalcitrant ESKAPE pathogens. PloS Pathog 14(6):e1007084. https://doi.org/10.1371/journal.ppat.1007084
Comments (0)