Asadi F, Asoodeh A, Kashef R, Housaindokht M-R, Haghparast A, Chamani J (2013) The effect of antimicrobial peptide Temporin-Ra on cell viability and gene expression of pro-inflammatory factors in A549 cell line. Int J Pept Res Ther 19:373–380
Asoodeh A, Haghparast A, Kashef R, Chamani J (2013) Pro-inflammatory cytokine responses of A549 epithelial cells to antimicrobial peptide brevinin-2R. Int J Pept Res Ther 19(2):157–162. https://doi.org/10.1007/s10989-012-9328-6
Asoodeh A, Zardini HZ, Chamani J (2012) Identification and characterization of two novel antimicrobial peptides, temporin-Ra and temporin‐Rb, from skin secretions of the marsh frog (Rana ridibunda). J Pept Sci 18(1):10–16
Article CAS PubMed Google Scholar
Boparai JK, Sharma PK (2020) Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein Pept Lett 27(1):4–16. https://doi.org/10.2174/0929866526666190822165812
Article CAS PubMed Google Scholar
Buri MV, Torquato HFV, Barros CC, Ide JS, Miranda A, Paredes-Gamero EJ (2017) Comparison of cytotoxic activity in leukemic lineages reveals important features of β-hairpin antimicrobial peptides. J Cell Biochem 118(7):1764–1773
Article CAS PubMed Google Scholar
BustosRivera-Bahena G, López-Guerrero DV, Márquez-Bandala AH, Esquivel-Guadarrama FR, Montiel-Hernández J-L (2021) TGF-β1 signaling inhibit the in vitro apoptotic, infection and stimulatory cell response induced by influenza H1N1 virus infection on A549 cells. Virus Res 297:198337. https://doi.org/10.1016/j.virusres.2021.198337
Article CAS PubMed Google Scholar
Cruz J, Ortiz C, Guzman F, Fernández-Lafuente R, Torres R (2014) Antimicrobial peptides: promising compounds against pathogenic microorganisms. Curr Med Chem 21(20):2299–2321
Article CAS PubMed Google Scholar
Fry DE (2018) Antimicrobial Peptides. Surg. Infect 19(8):804–811
Jin H-E, Farr R, Lee S-W (2014) Collagen mimetic peptide engineered M13 bacteriophage for collagen targeting and imaging in cancer. Biomaterials 35(33):9236–9245
Article CAS PubMed Google Scholar
Kopecka J, Trouillas P, Gašparović AČ, Gazzano E, Assaraf YG, Riganti C (2020) Phospholipids and cholesterol: inducers of cancer multidrug resistance and therapeutic targets. Drug Resist Updat Rev Comment Antimicrob Anticancer Chemother 49:100670. https://doi.org/10.1016/j.drup.2019.100670
Krämer J et al (2022) Antimicrobial, insecticidal and cytotoxic activity of linear venom peptides from the pseudoscorpion Chelifer cancroides. Toxins (Basel). https://doi.org/10.3390/toxins14010058
Article PubMed PubMed Central Google Scholar
Kwaśniak K et al (2019) Scientific reports concerning the impact of interleukin 4, interleukin 10 and transforming growth factor β on cancer cells. Cent J Immunol 44(2):190–200. https://doi.org/10.5114/ceji.2018.76273
Li X, Zuo S, Wang B, Zhang K, Wang Y (2022) Antimicrobial mechanisms and clinical application prospects of antimicrobial peptides. Molecules. https://doi.org/10.3390/molecules27092675
Article PubMed PubMed Central Google Scholar
Liu W et al (2020) IL-6 promotes metastasis of non-small-cell lung cancer by up-regulating TIM-4 via NF-κB. Cell Prolif 53(3):e12776
Article PubMed PubMed Central Google Scholar
Luo Y, Song Y (2021) Mechanism of antimicrobial peptides: Antimicrobial, anti-inflammatory and antibiofilm activities. Int J Mol Sci. https://doi.org/10.3390/ijms222111401
Article PubMed PubMed Central Google Scholar
Shang D, Sun Y, Wang C, Ma L, Li J, Wang X (2012) Rational design of anti-microbial peptides with enhanced activity and low cytotoxicity based on the structure of the arginine/histidine-rich peptide, chensinin-1. J Appl Microbiol 113(3):677–685
Article CAS PubMed Google Scholar
Spann NJ, Glass CK (2013) Sterols and oxysterols in immune cell function. Nat Immunol 14(9):893–900
Article CAS PubMed Google Scholar
Srivastava M et al (2021) Expression of antimicrobial peptides and cytokines in human omentum following abdominal surgery. Cureus 13(8):e17477
PubMed PubMed Central Google Scholar
Suzuki K, Murakami T, Kuwahara-Arai K, Tamura H, Hiramatsu K, Nagaoka I (2011) Human anti-microbial cathelicidin peptide LL-37 suppresses the LPS-induced apoptosis of endothelial cells. Int Immunol 23(3):185–193
Article CAS PubMed Google Scholar
Svenson J, Molchanova N, Schroeder CI (2022) Antimicrobial peptide mimics for clinical use: does size Matter? Front Immunol 13:915368. https://doi.org/10.3389/fimmu.2022.915368
Article CAS PubMed PubMed Central Google Scholar
Swithenbank L et al (2020) Temporin A and Bombinin H2 antimicrobial peptides exhibit selective cytotoxicity to lung cancer cells. Scientifica (Cairo). https://doi.org/10.1155/2020/3526286
Szuster-Ciesielska A, Urban-Chmiel R, Wernicki A, Mascaron L, Wasak M, Bousquet E (2019) Evaluation of the ability of colistin, amoxicillin (components of Potencil(®)), and fluoroquinolones to attenuate bacterial endotoxin- and Shiga exotoxin-mediated cytotoxicity-In vitro studies. J Vet Pharmacol Ther 42(1):85–103. https://doi.org/10.1111/jvp.12710
Article CAS PubMed Google Scholar
Tabatabaei MS, Ahmed M (2022) Enzyme-linked immunosorbent assay (ELISA). Methods Mol Biol 2508:115–134. https://doi.org/10.1007/978-1-0716-2376-3_10
Terada T, Nii T, Isobe N, Yoshimura Y (2020) Effect of antibiotic treatment on microbial composition and expression of antimicrobial peptides and cytokines in the chick cecum. Poult Sci 99(7):3385–3392
Article CAS PubMed PubMed Central Google Scholar
Yang J et al (2019) Modification of IL-24 by Tumor penetrating peptide iRGD enhanced its antitumor efficacy against non-small cell Lung cancer. Int Immunopharmacol 70:125–134. https://doi.org/10.1016/j.intimp.2019.02.027
Article CAS PubMed Google Scholar
Yang Z, Zhang J, Wu F-G, Lin F (2023) Structural characterization, functional profiling, and mechanism study of four antimicrobial peptides for antibacterial and anticancer applications. Langmuir 39(6):2161–2170. https://doi.org/10.1021/acs.langmuir.2c02526
Article CAS PubMed Google Scholar
Yue S et al (2020) Antimicrobial peptide CAMA-syn expressed in pulmonary epithelium by recombination adenovirus inhibited the growth of intracellular bacteria. J Gene Med 22(3):e3149
Article CAS PubMed Google Scholar
Zhou J et al (2022) A carrier-free, dual-functional hydrogel constructed of antimicrobial peptide Jelleine-1 and 8Br-cAMP for MRSA infected diabetic wound healing. Acta Biomater 151:223–234. https://doi.org/10.1016/j.actbio.2022.07.066
Comments (0)