Kaur R, Kaur M, Singh J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc Diabetol. 2018;17:121. https://doi.org/10.1186/s12933-018-0763-3.
Article CAS PubMed PubMed Central Google Scholar
Zhang T, Li H, Ouyang C, Cao G, Gao J, Wu J, et al. Liver kinase B1 inhibits smooth muscle calcification via high mobility group box 1. Redox Biol. 2021;38:101828. https://doi.org/10.1016/j.redox.2020.101828.
Article CAS PubMed Google Scholar
Niu C, Chen Z, Kim KT, Sun J, Xue M, Chen G, et al. Metformin alleviates hyperglycemia-induced endothelial impairment by downregulating autophagy via the Hedgehog pathway. Autophagy. 2019;15:843–70. https://doi.org/10.1080/15548627.2019.1569913.
Article CAS PubMed PubMed Central Google Scholar
Xu S, Ilyas I, Little PJ, Li H, Kamato D, Zheng X, et al. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: from mechanism to pharmacotherapies. Pharmacol Rev. 2021;73:924–67. https://doi.org/10.1124/pharmrev.120.000096.
Article CAS PubMed Google Scholar
Zhang Y, Liu J, Tian XY, Wong WT, Chen Y, Wang L, et al. Inhibition of bone morphogenic protein 4 restores endothelial function in db/db diabetic mice. Arterioscler Thromb Vasc Biol. 2014;34:152–9. https://doi.org/10.1161/ATVBAHA.113.302696.
Article CAS PubMed Google Scholar
Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, et al. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol. 2020;13:110. https://doi.org/10.1186/s13045-020-00946-7.
Article CAS PubMed PubMed Central Google Scholar
Feng X, Yang W, Huang L, Cheng H, Ge X, Zan G, et al. Causal effect of genetically determined blood copper concentrations on multiple diseases: a Mendelian randomization and phenome-wide association study. Phenomics. 2022;2:242–53. https://doi.org/10.1007/s43657-022-00052-3.
Article CAS PubMed PubMed Central Google Scholar
Kang YJ. Copper and homocysteine in cardiovascular diseases. Pharmacol Ther. 2011;129:321–31. https://doi.org/10.1016/j.pharmthera.2010.11.004.
Article CAS PubMed Google Scholar
Yin R, Wang H, Li C, Wang L, Lai S, Yang X, et al. Induction of apoptosis and autosis in cardiomyocytes by the combination of homocysteine and copper via NOX-mediated p62 expression. Cell Death Discov. 2022;8:75. https://doi.org/10.1038/s41420-022-00870-4.
Article CAS PubMed PubMed Central Google Scholar
Nunes KZ, Fioresi M, Marques VB, Vassallo DV. Acute copper overload induces vascular dysfunction in aortic rings due to endothelial oxidative stress and increased nitric oxide production. J Toxicol Environ Health A. 2018;81:218–28. https://doi.org/10.1080/15287394.2018.1437490.
Article CAS PubMed Google Scholar
Zhang H, Yan C, Yang Z, Zhang W, Niu Y, Li X, et al. Alterations of serum trace elements in patients with type 2 diabetes. J Trace Elem Med Biol. 2017;40:91–6. https://doi.org/10.1016/j.jtemb.2016.12.017.
Article CAS PubMed Google Scholar
Li P, Yin J, Zhu Y, Li S, Chen S, Sun T, et al. Association between plasma concentration of copper and gestational diabetes mellitus. Clin Nutr. 2019;38:2922–7. https://doi.org/10.1016/j.clnu.2018.12.032.
Article CAS PubMed Google Scholar
Yang F, Pei R, Zhang Z, Liao J, Yu W, Qiao N, et al. Copper induces oxidative stress and apoptosis through mitochondria-mediated pathway in chicken hepatocytes. Toxicol Vitr. 2019;54:310–6. https://doi.org/10.1016/j.tiv.2018.10.017.
Jiang C, Wu B, Xue M, Lin J, Hu Z, Nie X, Cai G. Inflammation accelerates copper-mediated cytotoxicity through induction of six-transmembrane epithelial antigens of prostate 4 expression. Immunol Cell Biol. 2021;99:392–402. https://doi.org/10.1111/imcb.12427.
Article CAS PubMed Google Scholar
Scarl RT, Lawrence CM, Gordon HM, Nunemaker CS. STEAP4: its emerging role in metabolism and homeostasis of cellular iron and copper. J Endocrinol. 2017;234:R123–R134. https://doi.org/10.1530/JOE-16-0594.
Article CAS PubMed PubMed Central Google Scholar
Liao Y, Zhao J, Bulek K, Tang F, Chen X, Cai G, et al. Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis. Nat Commun. 2020;11:900. https://doi.org/10.1038/s41467-020-14698-y.
Article CAS PubMed PubMed Central Google Scholar
Tsai P-H, Chien Y, Wang M-L, Hsu C-H, Laurent B, Chou S-J, et al. Ash2l interacts with Oct4-stemness circuitry to promote super-enhancer-driven pluripotency network. Nucleic Acids Res. 2019;47:10115–33. https://doi.org/10.1093/nar/gkz801.
Article CAS PubMed PubMed Central Google Scholar
Takahashi Y, Westfield GH, Oleskie AN, Trievel RC, Shilatifard A, Skiniotis G. Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human. Proc Natl Acad Sci USA. 2011;108:20526–31. https://doi.org/10.1073/pnas.1109360108.
Article CAS PubMed PubMed Central Google Scholar
Steward MM, Lee J-S, O’Donovan A, Wyatt M, Bernstein BE, Shilatifard A. Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes. Nat Struct Mol Biol. 2006;13:852–4. https://doi.org/10.1038/nsmb1131.
Article CAS PubMed Google Scholar
Wu Y-J, Ko B-S, Liang S-M, Lu Y-J, Jan Y-J, Jiang S-S, et al. ZNF479 downregulates metallothionein-1 expression by regulating ASH2L and DNMT1 in hepatocellular carcinoma. Cell Death Dis. 2019;10:408. https://doi.org/10.1038/s41419-019-1651-9.
Article CAS PubMed PubMed Central Google Scholar
Zeng K, Wu Y, Wang C, Wang S, Sun H, Zou R, et al. ASH2L is involved in promotion of endometrial cancer progression via upregulation of PAX2 transcription. Cancer Sci. 2020;111:2062–77. https://doi.org/10.1111/cas.14413.
Article CAS PubMed PubMed Central Google Scholar
Han P, Gao D, Zhang W, Liu S, Yang S, Li X. Puerarin suppresses high glucose-induced MCP-1 expression via modulating histone methylation in cultured endothelial cells. Life Sci. 2015;130:103–7. https://doi.org/10.1016/j.lfs.2015.02.022.
Article CAS PubMed Google Scholar
Yang D, Xiao C, Long F, Wu W, Huang M, Qu L, et al. Fra-1 plays a critical role in angiotensin II-induced vascular senescence. FASEB J. 2019;33:7603–14. https://doi.org/10.1096/fj.201801671RRRR.
Article CAS PubMed Google Scholar
Wu W, Wang J, Xiao C, Su Z, Su H, Zhong W, et al. SMYD2-mediated TRAF2 methylation promotes the NF-κB signaling pathways in inflammatory diseases. Clin Transl Med. 2021;11:e591. https://doi.org/10.1002/ctm2.591.
Article CAS PubMed PubMed Central Google Scholar
Wang Y, Gao L, Li Z, Ma X. MicroRNA-301a-3p promotes diabetic retinopathy via regulation of six-transmembrane epithelial antigen of prostate 4. Inflamm Res. 2021;70:445–57. https://doi.org/10.1007/s00011-020-01431-0.
Article CAS PubMed Google Scholar
Chen X, Huang Z, Zhou B, Wang H, Jia G, Liu G, Zhao H. STEAP4 and insulin resistance. Endocrine. 2014;47:372–9. https://doi.org/10.1007/s12020-014-0230-1.
Article CAS PubMed Google Scholar
Sharp PA. Ctr1 and its role in body copper homeostasis. Int J Biochem Cell Biol. 2003;35:288–91. https://doi.org/10.1016/s1357-2725(02)00134-6.
Article CAS PubMed Google Scholar
Li H, Xia N, Hasselwander S, Daiber A. Resveratrol and vascular function. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20092155.
Article PubMed PubMed Central Google Scholar
Lee Y-T, Ayoub A, Park S-H, Sha L, Xu J, Mao F, et al. Mechanism for DPY30 and ASH2L intrinsically disordered regions to modulate the MLL/SET1 activity on chromatin. Nat Commun. 2021;12:2953. https://doi.org/10.1038/s41467-021-23268-9.
Article CAS PubMed PubMed Central Google Scholar
Qi J, Huo L, Zhu YT, Zhu Y-J. Absent, small or homeotic 2-like protein (ASH2L) enhances the transcription of the estrogen receptor α gene through GATA-binding protein 3 (GATA3). J Biol Chem. 2014;289:31373–81. https://doi.org/10.1074/jbc.M114.579839.
Article CAS PubMed PubMed Central Google Scholar
Takizawa F, Mizutani S, Ogawa Y, Sawada N. Glucose-independent persistence of PAI-1 gene expression and H3K4 tri-methylation in type 1 diabetic mouse endothelium: implication in metabolic memory. Biochem Biophys Res Commun. 2013;433:66–72. https://doi.org/10.1016/j.bbrc.2013.02.064.
Comments (0)