Interspecies Scaling of Transgene Products for Viral Vector Gene Therapies: Method Assessment Using Data from Eleven Viral Vectors

Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther. 2021;6(1):53. https://doi.org/10.1038/s41392-021-00487-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

FDA U. Guidance for industry - considerations for the design of early-phase clinical trials of cellular and gene therapy products. https://www.fda.gov/media/106369/download. Accessed 13 Oct 2023.

Zhong C, Jiang W, Wang Y, Sun J, Wu X, Zhuang Y, et al. Repeated systemic dosing of adeno-associated virus vectors in immunocompetent mice after blockade of T cell costimulatory pathways. Hum Gene Ther. 2022;33(5–6):290–300. https://doi.org/10.1089/hum.2021.129.

Article  CAS  PubMed  Google Scholar 

Sun K, Liao MZ. Clinical pharmacology considerations on recombinant adeno-associated virus-based gene therapy. J Clin Pharmacol. 2022;62(Suppl 2):S79–94. https://doi.org/10.1002/jcph.2141.

Article  CAS  PubMed  Google Scholar 

Tang F, Wong H, Ng CM. Rational clinical dose selection of adeno-associated virus-mediated gene therapy based on allometric principles. Clin Pharmacol Ther. 2021;110(3):803–7. https://doi.org/10.1002/cpt.2269.

Article  PubMed  Google Scholar 

Zou P. First-in-patient dose prediction for adeno-associated virus-mediated hemophilia gene therapy using allometric scaling. Mol Pharm. 2023;20(1):758–66. https://doi.org/10.1021/acs.molpharmaceut.2c00555.

Article  CAS  PubMed  Google Scholar 

Aksenov S, Roberts JC, Mugundu G, Mueller KT, Bhattacharya I, Tortorici MA. Current and next steps toward prediction of human dose for gene therapy using translational dose-response studies. Clin Pharmacol Ther. 2021;110(5):1176–9. https://doi.org/10.1002/cpt.2374.

Article  PubMed  Google Scholar 

Zou P. Interspecies normalization of dose-response relationship for adeno-associated virus-mediated haemophilia gene therapy-application to human dose prediction. Br J Clin Pharmacol. 2022. https://doi.org/10.1111/bcp.15597.

Article  PubMed  Google Scholar 

Dedrick R, Bischoff KB, Zaharko DS. Interspecies correlation of plasma concentration history of methotrexate (NSC-740). Cancer Chemother Rep. 1970;54(2):95–101.

CAS  PubMed  Google Scholar 

Castaman G, Matino D. Hemophilia a and B: molecular and clinical similarities and differences. Haematologica. 2019;104(9):1702–9. https://doi.org/10.3324/haematol.2019.221093.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duan D, Goemans N, Takeda S, Mercuri E, Aartsma-Rus A. Duchenne muscular dystrophy. Nat Rev Dis Primers. 2021;7(1):13. https://doi.org/10.1038/s41572-021-00248-3.

Article  PubMed  PubMed Central  Google Scholar 

Caroline Le Guiner XX, Thibaut Larcher, Aude Lafoux, Corinne Huchet, Gilles Toumaniantz, Oumeya Adjali, Ignacio Anegon, Séverine Remy, Josh Grieger, Juan Li, Vahid Farrokhi, Hendrik Neubert, Jane Owens, Maritza McIntyre, Philippe Moullier, R. Jude Samulski. Evaluation of an AAV9-mini-dystrophin gene therapy candidate in a rat model of Duchenne muscular dystrophy. Molecular Therapy: Methods & Clinical Development. 2023;30:In press.

Flanigan KM, Vetter TA, Simmons TR, Iammarino M, Frair EC, Rinaldi F, et al. A first-in-human phase I/IIa gene transfer clinical trial for duchenne muscular dystrophy using rAAVrh74.MCK.GALGT2. Mol Ther Methods Clin Dev. 2022;27:47–60. https://doi.org/10.1016/j.omtm.2022.08.009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shieh PB. Emerging strategies in the treatment of duchenne muscular dystrophy. Neurotherapeutics. 2018;15(4):840–8. https://doi.org/10.1007/s13311-018-00687-z.

Article  PubMed  PubMed Central  Google Scholar 

Pfizer. Analyst and investor call to review DMD gene therapy presentation at ASGCT. 2020. Available from: https://s21.q4cdn.com/317678438/files/doc_presentations/2020/05/Investor-Call_ASGCT-2020_vF.pdf. Accessed 13 Oct 2023.

Stoller JK, Hupertz V, Aboussouan LS. Alpha-1 antitrypsin deficiency. In: Adam MP, Everman DB, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, et al., editors. GeneReviews((R)). Seattle (WA)1993.

Drouin LM, Agbandje-McKenna M. Adeno-associated virus structural biology as a tool in vector development. Future Virol. 2013;8(12):1183–99. https://doi.org/10.2217/fvl.13.112.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flotte TR, Conlon TJ, Poirier A, Campbell-Thompson M, Byrne BJ. Preclinical characterization of a recombinant adeno-associated virus type 1-pseudotyped vector demonstrates dose-dependent injection site inflammation and dissemination of vector genomes to distant sites. Hum Gene Ther. 2007;18(3):245–56. https://doi.org/10.1089/hum.2006.113.

Article  CAS  PubMed  Google Scholar 

Flotte TR, Trapnell BC, Humphries M, Carey B, Calcedo R, Rouhani F, et al. Phase 2 clinical trial of a recombinant adeno-associated viral vector expressing alpha1-antitrypsin: interim results. Hum Gene Ther. 2011;22(10):1239–47. https://doi.org/10.1089/hum.2011.053.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gernoux G, Gruntman AM, Blackwood M, Zieger M, Flotte TR, Mueller C. Muscle-directed delivery of an AAV1 vector leads to capsid-specific T cell exhaustion in nonhuman primates and humans. Mol Ther. 2020;28(3):747–57. https://doi.org/10.1016/j.ymthe.2020.01.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brantly ML, Chulay JD, Wang L, Mueller C, Humphries M, Spencer LT, et al. Sustained transgene expression despite T lymphocyte responses in a clinical trial of rAAV1-AAT gene therapy. Proc Natl Acad Sci U S A. 2009;106(38):16363–8. https://doi.org/10.1073/pnas.0904514106.

Article  PubMed  PubMed Central  Google Scholar 

Dinney CP, Fisher MB, Navai N, O’Donnell MA, Cutler D, Abraham A, et al. Phase I trial of intravesical recombinant adenovirus mediated interferon-alpha2b formulated in Syn3 for bacillus calmette-guerin failures in nonmuscle invasive bladder cancer. J Urol. 2013;190(3):850–6. https://doi.org/10.1016/j.juro.2013.03.030.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ehrhardt A, Kay MA. A new adenoviral helper-dependent vector results in long-term therapeutic levels of human coagulation factor IX at low doses in vivo. Blood. 2002;99(11):3923–30. https://doi.org/10.1182/blood.v99.11.3923.

Article  CAS  PubMed  Google Scholar 

West GB, Woodruff WH, Brown JH. Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proc Natl Acad Sci U S A. 2002;99(Suppl 1):2473–8. https://doi.org/10.1073/pnas.012579799.

Article  PubMed  PubMed Central  Google Scholar 

Terrance Hawk SL. and Timothy Morris. Formulary for Laboratory Animals: Blackwell Publishing; 2005.

Google Scholar 

Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10(7):1093–5. https://doi.org/10.1023/a:1018943613122.

Article  CAS  PubMed  Google Scholar 

Pappas LE, Nagy TR. The translation of age-related body composition findings from rodents to humans. Eur J Clin Nutr. 2019;73(2):172–8. https://doi.org/10.1038/s41430-018-0324-6.

Article  PubMed  Google Scholar 

Jeusette I, Greco D, Aquino F, Detilleux J, Peterson M, Romano V, et al. Effect of breed on body composition and comparison between various methods to estimate body composition in dogs. Res Vet Sci. 2010;88(2):227–32. https://doi.org/10.1016/j.rvsc.2009.07.009.

Article  CAS  PubMed  Google Scholar 

Cossio Bolanos MA, Andruske CL, de Arruda M, Sulla-Torres J, Urra-Albornoz C, Rivera-Portugal M, et al. Muscle mass in children and adolescents: proposed equations and reference values for assessment. Front Endocrinol (Lausanne). 2019;10:583. https://doi.org/10.3389/fendo.2019.00583.

Article  PubMed  Google Scholar 

Leonard KC, Worden N, Boettcher ML, Dickinson E, Omstead KM, Burrows AM, et al. Anatomical and ontogenetic influences on muscle density. Sci Rep. 2021;11(1):2114. https://doi.org/10.1038/s41598-021-81489-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fong S, Yates B, Sihn CR, Mattis AN, Mitchell N, Liu S, et al. Interindividual variability in transgene mRNA and protein production following adeno-associated virus gene therapy for hemophilia a. Nat Med. 2022;28(4):789–97. https://doi.org/10.1038/s41591-022-01751-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Den Uijl IE, Mauser Bunschoten EP, Roosendaal G, Schutgens RE, Biesma DH, Grobbee DE, et al. Clinical severity of haemophilia a: does the classification of the 1950s still stand? Haemophilia. 2011;17(6):849–53. https://doi.org/10.1111/j.1365-2516.2011.02539.x.

Article  CAS  Google Scholar 

Perrin GQ, Herzog RW, Markusic DM. Update on clinical gene therapy for hemophilia. Blood. 2019;133(5):407–14. https://doi.org/10.1182/blood-2018-07-820720.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pfizer. Pfizer and Sangamo announce updated phase 1/2 results showing sustained bleeding control in highest dose cohort through two years following hemophilia A gene therapy. 2021. Available from: https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-sangamo-announce-updated-phase-12-results-1. Accessed 13 Oct 2023.

Gopinath C, Nathar TJ, Ghosh A, Hickstein DD, Nelson EJR. Contemporary animal models for human gene therapy applications. Curr Gene Ther. 2015;15(6):531–40. https://doi.org/10.2174/1566523215666150929110424.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen N, Sun K, Chemuturi NV, Cho H, Xia CQ. The perspective of DMPK on recombinant adeno-associated virus-based gene therapy: past learning, current support, and future contribution. AAPS J. 2022;24(1):31. https://doi.org/10.1208/s12248-021-00678-7.

Article  PubMed  Google Scholar 

Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ, et al. Successful transduction

Comments (0)

No login
gif