Shimizu M, Suzuki K, Kato K, Jojima T, Iijima T, Murohisa T, et al. Evaluation of the effects of dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, on hepatic steatosis and fibrosis using transient elastography in patients with type 2 diabetes and non-alcoholic fatty liver disease. Diabetes Obes Metab. 2019;21(2):285–92.
Article CAS PubMed Google Scholar
Ascha MS, Hanouneh IA, Lopez R, Tamimi TA, Feldstein AF, Zein NN. The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatol. 2010;51(6):1972–8.
Watanabe MA-O, Tozzi R, Risi R, Tuccinardi D, Mariani S, Basciani S, et al. Beneficial effects of the ketogenic diet on nonalcoholic fatty liver disease: A comprehensive review of the literature. Obes Rev. 2020;21(8):e13024.
Article CAS PubMed PubMed Central Google Scholar
Fletcher JA, Deja S, Satapati S, Fu X, Burgess SC, Browning JD. Impaired ketogenesis and increased acetyl-CoA oxidation promote hyperglycemia in human fatty liver. JCI Insight. 2019;5(11):e127737.
Polidori D, Iijima H, Goda M, Maruyama N, Inagaki N, Crawford PA. Intra- and inter-subject variability for increases in serum ketone bodies in patients with type 2 diabetes treated with the sodium glucose co-transporter 2 inhibitor canagliflozin. Diabetes Obes Metab. 2018;20(5):1321–6.
Article CAS PubMed PubMed Central Google Scholar
Schaub JA, AlAkwaa FM, McCown PJ, Naik AS, Nair V, Eddy S, et al. SGLT2 inhibitors mitigate kidney tubular metabolic and mTORC1 perturbations in youth-onset type 2 diabetes. J Clin Invest. 2023;133(5):e164486.
Article CAS PubMed PubMed Central Google Scholar
Chiriacò M, Tricò D, Solini A. Mechanisms of cardio-renal protection of sodium-glucose cotransporter-2 inhibitors. Curr Opin Pharmacol. 2022;66:102272.
Ramakrishnan S, Mooli RGR, Han Y, Fiorenza E, Kumar S, Bello F, et al. Hepatic ketogenesis regulates lipid homeostasis via ACSL1-mediated fatty acid partitioning. 2023;rs.3.rs-3147009.
Asif S, Kim RY, Fatica T, Sim J, Zhao X, Oh Y, et al. Hmgcs2-mediated ketogenesis modulates high-fat diet-induced hepatosteatosis. Mol Metab. 2022;61:101494.
Article CAS PubMed PubMed Central Google Scholar
Cai D, Zhao Z, Hu J, Dai X, Zhong G, Gong J, et al. Identification of the Tumor Immune Microenvironment and Therapeutic Biomarkers by a Novel Molecular Subtype Based on Aging-Related Genes in Hepatocellular Carcinoma. Front Surg. 2022;9:836080.
Article PubMed PubMed Central Google Scholar
Cui X, Yun X, Sun M, Li R, Lyu X, Lao Y, et al. HMGCL-induced β-hydroxybutyrate production attenuates hepatocellular carcinoma via DPP4-mediated ferroptosis susceptibility. Hepatol Int. 2023;17(2):377–92.
Shi M, Zhang H, Wang W, Zhang X, Liu J, Wang Q, et al. Effect of dapagliflozin on liver and pancreatic fat in patients with type 2 diabetes and non-alcoholic fatty liver disease. J Diabetes Complications. 2023;37(10):108610.
Article CAS PubMed Google Scholar
Gaborit BA-OX, Ancel P, Abdullah AE, Maurice F, Abdesselam I, Calen A, et al. Effect of empagliflozin on ectopic fat stores and myocardial energetics in type 2 diabetes: the EMPACEF study. Cardiovasc Diabetol. 2021;20(1):57.
Article CAS PubMed PubMed Central Google Scholar
Wallenius K, Kroon T, Hagstedt T, Löfgren L, Sörhede-Winzell M, Boucher J, et al. The SGLT2 inhibitor dapagliflozin promotes systemic FFA mobilization, enhances hepatic β-oxidation, and induces ketosis. J Lipid Res. 2022;63(3):100176.
Article CAS PubMed PubMed Central Google Scholar
Mathieu C, Dandona P, Gillard P, Senior P, Hasslacher C, Araki E, et al. Efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes (the DEPICT-2 Study): 24-Week results from a randomized controlled trial. Diabetes Care. 2018;41(9):1938–46.
Article CAS PubMed Google Scholar
Dandona P, Mathieu C, Phillip M, Hansen L, Tschöpe D, Thorén F, et al. Efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes: the DEPICT-1 52-week study. Diabetes Care. 2018;41(12):2552–9.
Article CAS PubMed Google Scholar
Jeon JY, Ayyar VS, Mitra A. Pharmacokinetic and Pharmacodynamic Modeling of siRNA Therapeutics - a Minireview. Pharm Res. 2022;39(8):1749–59.
Article CAS PubMed Google Scholar
Sou T, Hansen J, Liepinsh E, Backlund M, Ercan O, Grinberga S, et al. Model-informed drug development for antimicrobials: translational PK and PK/PD Modeling to Predict an Efficacious Human Dose for Apramycin. Clin Pharmacol Ther. 2021;109(4):1063-73.
Danhof M, De Lange EC, Della Pasqua OE, Ploeger BA, Voskuyl RA. Mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modeling in translational drug research. Trends Pharmacol Sci. 2008;29(4):186–91.
Article CAS PubMed Google Scholar
Thongnak L, Chatsudthipong V, Kongkaew A, Lungkaphin A. Effects of dapagliflozin and statins attenuate renal injury and liver steatosis in high-fat/high-fructose diet-induced insulin resistant rats. Toxicol Appl Pharmacol. 2020;396:114997.
Article CAS PubMed Google Scholar
Honda K, Kamisoyama H, Tominaga Y, Yokota S, Hasegawa S. The molecular mechanism underlying the reduction in abdominal fat accumulation by licorice flavonoid oil in high fat diet-induced obese rats. Anim Sci J. 2009;80(5):562–9.
Article CAS PubMed Google Scholar
Long Q, Chen H, Yang W, Yang L, Zhang LA-O. Delphinidin-3-sambubioside from Hibiscus sabdariffa. L attenuates hyperlipidemia in high fat diet-induced obese rats and oleic acid-induced steatosis in HepG2 cells. Bioengineered. 2021;12(1):3837–49.
Article CAS PubMed PubMed Central Google Scholar
Cook GA, Lavrentyev EN, Pham K, Park EA. Streptozotocin diabetes increases mRNA expression of ketogenic enzymes in the rat heart. Biochim Biophys Acta Gen Subj. 2017;1861(2):307–12.
Article CAS PubMed Google Scholar
Brunt EM, Fau KD, Wilson LA, Belt P, Neuschwander-Tetri BA, (CRN) NCRN. Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology. 2011;53(3):810–20.
Article CAS PubMed Google Scholar
Männistö VT, Simonen M, Hyysalo J, Soininen P, Kangas AJ, Kaminska D, et al. Ketone body production is differentially altered in steatosis and non-alcoholic steatohepatitis in obese humans. Liver Int. 2015;35(7):1853–61.
Kleiner DE, Fau BE, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatol. 2005;41(6):1313–21.
Mehlem A, Hagberg CE, Muhl L, Eriksson U, Falkevall A. Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease. Nat Protoc. 2013;8(6):1149–54.
Maurer TS, Ghosh A, Haddish-Berhane N, Sawant-Basak A, Boustany-Kari CM, She L, Leininger MT, et al. Pharmacodynamic model of sodium-glucose transporter 2 (SGLT2) inhibition: implications for quantitative translational pharmacology. AAPS J. 2011;13(4):576–84.
Article CAS PubMed PubMed Central Google Scholar
Mager DE, Wyska E, Jusko WJ. Diversity of mechanism-based pharmacodynamic models. Drug Metab Dispos. 2003;31(5):510–8.
Article CAS PubMed Google Scholar
Rieger TR, Allen RJ, Musante CJ. A Quantitative Systems Pharmacology Model of Liver Lipid Metabolism for Investigation of Non-Alcoholic Fatty Liver Disease. Front Pharmacol. 2022;13:910789.
Article CAS PubMed PubMed Central Google Scholar
Ashworth WB, Davies NA-O, Bogle ID. A Computational Model of Hepatic Energy Metabolism: Understanding Zonated Damage and Steatosis in NAFLD. PLoS Comput Biol. 2016;12(9):e1005105.
Article PubMed PubMed Central Google Scholar
Wang JA-O, Wen Y, Zhao WA-O, Zhang Y, Lin F, Ouyang C, et al. Hepatic conversion of acetyl-CoA to acetate plays crucial roles in energy stress. LID-
Comments (0)