Tuning the Emulsion Properties Influences the Size of Poly(Caprolactone) Particles for Drug Delivery Applications

Rathna GVN, Bhagyashri S, Gadgil T, Killi N. Polyhydroxyalkanoates: The Application of Eco-Friendly Materials. Polymers as Drug Delivery Systems. New Jersey: John Wiley & Sons; 2016. p. 2-33.

Jahangirian H, Lemraski EG, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomedicine. 2017;12:2957–78. https://doi.org/10.2147/IJN.S127683.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu Y, Liu H, Song L. Novel drug delivery systems targeting oxidative stress in chronic obstructive pulmonary disease: a review. J Nanobiotechnology. 2020;18(1):145. https://doi.org/10.1186/s12951-020-00703-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ulucan-Karnak F, Kuru Cİ. Chapter 13 - Advantages of nanodrug targeting than conventional dosage system. In: Pratap Singh R, Rb Singh K, Singh J, Adetunji CO, editors. Nanotechnology for Drug Delivery and Pharmaceuticals. Academic Press; 2023. p. 295–310.

Chapter  Google Scholar 

Chang SH, Lee HJ, Park S, Kim Y, Jeong B. Fast Degradable Polycaprolactone for Drug Delivery. Biomacromol. 2018;19(6):2302–7. https://doi.org/10.1021/acs.biomac.8b00266.

Article  CAS  Google Scholar 

Li L, Gatto GJ, Brand RM, Krovi SA, Cottrell ML, Norton C, et al. Long-acting biodegradable implant for sustained delivery of antiretrovirals (ARVs) and hormones. J Control Release. 2021;340:188–99. https://doi.org/10.1016/j.jconrel.2021.10.021.

Article  CAS  PubMed  Google Scholar 

Acosta MF, Abrahamson MD, Encinas-Basurto D, Fineman JR, Black SM, Mansour HM. Inhalable Nanoparticles/Microparticles of an AMPK and Nrf2 Activator for Targeted Pulmonary Drug Delivery as Dry Powder Inhalers. AAPS J. 2020;23(1):2. https://doi.org/10.1208/s12248-020-00531-3.

Article  CAS  PubMed  Google Scholar 

Wiwatchaitawee K, Mekkawy AI, Quarterman JC, Naguib YW, Ebeid K, Geary SM, et al. The MEK 1/2 inhibitor PD98059 exhibits synergistic anti-endometrial cancer activity with paclitaxel in vitro and enhanced tissue distribution in vivo when formulated into PAMAM-coated PLGA-PEG nanoparticles. Drug Deliv Transl Res. 2022;12(7):1684–96. https://doi.org/10.1007/s13346-021-01065-7.

Article  CAS  PubMed  Google Scholar 

Naguib YW, Givens BE, Ho G, Yu Y, Wei SG, Weiss RM, et al. An injectable microparticle formulation for the sustained release of the specific MEK inhibitor PD98059: in vitro evaluation and pharmacokinetics. Drug Deliv Transl Res. 2021;11(1):182–91. https://doi.org/10.1007/s13346-020-00758-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Terry TL, Givens BE, Rodgers VGJ, Salem AK. Tunable Properties of Poly-DL-Lactide-Monomethoxypolyethylene Glycol Porous Microparticles for Sustained Release of Polyethylenimine-DNA Polyplexes. AAPS PharmSciTech. 2019;20(1):23. https://doi.org/10.1208/s12249-018-1215-9.

Article  CAS  PubMed  Google Scholar 

El-Sherbiny IM, El-Baz NM, Yacoub MH. Inhaled nano- and microparticles for drug delivery. Glob Cardiol Sci Pract. 2015;2015:2. https://doi.org/10.5339/gcsp.2015.2.

Article  PubMed  PubMed Central  Google Scholar 

Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):71. https://doi.org/10.1186/s12951-018-0392-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferrari R, Sponchioni M, Morbidelli M, Moscatelli D. Polymer nanoparticles for the intravenous delivery of anticancer drugs: the checkpoints on the road from the synthesis to clinical translation. Nanoscale. 2018;10(48):22701–19. https://doi.org/10.1039/c8nr05933k.

Article  CAS  PubMed  Google Scholar 

Choi CH, Zuckerman JE, Webster P, Davis ME. Targeting kidney mesangium by nanoparticles of defined size. Proc Natl Acad Sci U S A. 2011;108(16):6656–61. https://doi.org/10.1073/pnas.1103573108.

Article  PubMed  PubMed Central  Google Scholar 

Kalyane D, Raval N, Maheshwari R, Tambe V, Kalia K, Tekade RK. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater Sci Eng C Mater Biol Appl. 2019;98:1252–76. https://doi.org/10.1016/j.msec.2019.01.066.

Article  CAS  PubMed  Google Scholar 

Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65(1–2):271–84. https://doi.org/10.1016/s0168-3659(99)00248-5.

Article  CAS  PubMed  Google Scholar 

Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70(1–2):1–20. https://doi.org/10.1016/s0168-3659(00)00339-4.

Article  CAS  PubMed  Google Scholar 

Owens DE 3rd, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102. https://doi.org/10.1016/j.ijpharm.2005.10.010.

Article  CAS  PubMed  Google Scholar 

Terry TL, Givens BE, Adamcakova-Dodd A, Thorne PS, Rodgers VGJ, Salem AK. Encapsulating Polyethyleneimine-DNA Nanoplexes into PEGylated Biodegradable Microparticles Increases Transgene Expression In Vitro and Reduces Inflammatory Responses In Vivo. AAPS PharmSciTech. 2021;22(2):69. https://doi.org/10.1208/s12249-021-01932-z.

Article  CAS  PubMed  Google Scholar 

Manoukian OS, Arul MR, Sardashti N, Stedman T, James R, Rudraiah S, et al. Biodegradable polymeric injectable implants for long-term delivery of contraceptive drugs. J Appl Polym Sci. 2018;135(14). https://doi.org/10.1002/app.46068.

Chandra R, Rustgi R. Biodegradable polymers. Prog Polym Sci. 1998;23(7):1273–335.

Article  CAS  Google Scholar 

Okada M. Chemical syntheses of biodegradable polymers. Prog Polym Sci. 2002;27(1):87–133. https://doi.org/10.1016/s0079-6700(01)00039-9.

Article  CAS  Google Scholar 

Woodring RN, Gurysh EG, Bachelder EM, Ainslie KM. Drug Delivery Systems for Localized Cancer Combination Therapy. ACS Appl Bio Mater. 2023;6(3):934–50. https://doi.org/10.1021/acsabm.2c00973.

Article  CAS  PubMed  Google Scholar 

Woodruff MA, Hutmacher DW. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog Polym Sci. 2010;35(10):1217–56. https://doi.org/10.1016/j.progpolymsci.2010.04.002.

Article  CAS  Google Scholar 

Sun H, Mei L, Song C, Cui X, Wang P. The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials. 2006;27(9):1735–40. https://doi.org/10.1016/j.biomaterials.2005.09.019.

Article  CAS  PubMed  Google Scholar 

Abramoff MD, Magalhaes PJ, Ram SJ. Image processing with ImageJ. Biophotonics Int. 2004;11(7):36–42.

Google Scholar 

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82. https://doi.org/10.1038/nmeth.2019.

Article  CAS  PubMed  Google Scholar 

Prasad A, Kandasubramanian B. Fused deposition processing polycaprolactone of composites for biomedical applications. Polym-Plast Technol Mater. 2019;58(13):1365–98. https://doi.org/10.1080/25740881.2018.1563117.

Article  CAS  Google Scholar 

Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM. Nanoemulsions: formation, structure, and physical properties. J Phys: Condens Matter. 2006;18(41):R635–66. https://doi.org/10.1088/0953-8984/18/41/r01.

Article  CAS  Google Scholar 

Witt S, Scheper T, Walter JG. Production of polycaprolactone nanoparticles with hydrodynamic diameters below 100 nm. Eng Life Sci. 2019;19(10):658–65. https://doi.org/10.1002/elsc.201800214.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang D, Salem AK. Optimized dextran-polyethylenimine conjugates are efficient non-viral vectors with reduced cytotoxicity when used in serum containing environments. Int J Pharm. 2012;427(1):71–9. https://doi.org/10.1016/j.ijpharm.2011.10.032.

Article  CAS  PubMed  Google Scholar 

Stark WJ. Nanoparticles in biological systems. Angew Chem Int Ed Engl. 2011;50(6):1242–58. https://doi.org/10.1002/anie.200906684.

Article  CAS  PubMed  Google Scholar 

Huang K, Hu Y, Yu C, Boerhan R, Jiang G. Charged surface groups of nanoparticles and the adsorbed proteins codetermine the fate of nanoparticles upon interacting with cells. RSC Adv. 2016;6(63):58315–24. https://doi.org/10.1039/c6ra07468e.

Article  CAS  Google Scholar 

Oh N, Park JH. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomed. 2014;9(Suppl 1):51–63. https://doi.org/10.2147/IJN.S26592.

Article  CAS  Google Scholar 

Foroozandeh P, Aziz AA. Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles. Nanoscale Res Lett. 2018;13(1):339. https://doi.org/10.1186/s11671-018-2728-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lukasiewicz S, Mikolajczyk A, Blasiak E, Fic E, Dziedzicka-Wasylewska M. Polycaprolactone nanoparticles as promising candidates for nanocarriers in novel nanomedicines. Pharmaceutics 2021;13(2). https://doi.org/10.3390/pharmaceutics13020191.

Comments (0)

No login
gif