Alexander BM, Pinnell N, Wen PY et al (2012) Targeting DNA repair and the cell cycle in glioblastoma. J Neurooncol 3:463–477. https://doi.org/10.1007/s11060-011-0765-4
Aloia L, Di Stefano B, Di Croce L (2013) Polycomb complexes in stem cells and embryonic development. Development 12:2525–2534. https://doi.org/10.1242/dev.091553
Au SL, Wong CC, Lee JM et al (2012) Enhancer of zeste homolog 2 epigenetically silences multiple Tumor suppressor microRNAs to promote Liver cancer Metastasis. Hepatology 2:622–631. https://doi.org/10.1002/hep.25679
Benetatos L, Vartholomatos G, Hatzimichael E (2014) Polycomb group proteins and MYC: the cancer connection. Cell Mol Life Sci 2:257–269. https://doi.org/10.1007/s00018-013-1426-x
Bretones G, Acosta JC, Caraballo JM et al (2011) SKP2 oncogene is a direct MYC target gene and MYC down-regulates p27(KIP1) through SKP2 in human Leukemia cells. J Biol Chem 11:9815–9825. https://doi.org/10.1074/jbc.M110.165977
Cao R, Zhang Y (2004) SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell 1:57–67. https://doi.org/10.1016/j.molcel.2004.06.020
Caraballo JM, Acosta JC, Cortes MA et al (2014) High p27 protein levels in chronic lymphocytic Leukemia are associated to low Myc and Skp2 expression, confer resistance to apoptosis and antagonize Myc effects on cell cycle. Oncotarget 13:4694–4708. https://doi.org/10.18632/oncotarget.2100
Carrano AC, Eytan E, Hershko A et al (1999) SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 4:193–199. https://doi.org/10.1038/12013
Chou J, Ferris AC, Chen T et al (2019) Roles of polycomb group proteins enhancer of zeste (E(z)) and polycomb (pc) during metamorphosis and larval leg regeneration in the flour beetle Tribolium castaneum. Dev Biol 1:34–46. https://doi.org/10.1016/j.ydbio.2019.03.002
Chu IM, Hengst L, Slingerland JM (2008) The cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 4:253–267. https://doi.org/10.1038/nrc2347
Chung H, Jung YM, Shin DH et al (2008) Anticancer effects of wogonin in both estrogen receptor-positive and -negative human Breast cancer cell lines in vitro and in nude mice xenografts. Int J Cancer 4:816–822. https://doi.org/10.1002/ijc.23182
Chuu CP, Kokontis JM, Hiipakka RA et al (2011) Androgen suppresses proliferation of castration-resistant LNCaP 104-R2 Prostate cancer cells through androgen receptor, Skp2, and c-Myc. Cancer Sci 11:2022–2028. https://doi.org/10.1111/j.1349-7006.2011.02043.x
Clarke J, Penas C, Pastori C et al (2013) Epigenetic pathways and glioblastoma treatment. Epigenetics 8:785–795. https://doi.org/10.4161/epi.25440
Article CAS PubMed PubMed Central Google Scholar
Conway E, Healy E, Bracken AP (2015) PRC2 mediated H3K27 methylations in cellular identity and cancer. Curr Opin Cell Biol. 42–48. https://doi.org/10.1016/j.ceb.2015.10.003
Crea F, Hurt EM, Farrar WL (2010) Clinical significance of polycomb gene expression in brain tumors. Mol Cancer 265. https://doi.org/10.1186/1476-4598-9-265
Deb G, Singh AK, Gupta S (2014) EZH2: not EZHY (easy) to deal. Mol Cancer Res 5:639–653. https://doi.org/10.1158/1541-7786.MCR-13-0546
Del Moral-Morales A, Gonzalez-Orozco JC, Hernandez-Vega AM et al (2022) EZH2 mediates proliferation, Migration, and Invasion promoted by Estradiol in Human Glioblastoma cells. Front Endocrinol (Lausanne) 703733. https://doi.org/10.3389/fendo.2022.703733
Dunn GP, Rinne ML, Wykosky J et al (2012) Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev 8:756–784. https://doi.org/10.1101/gad.187922.112
Gu J, Wang J, You A et al (2021) MiR-137 inhibits the proliferation, invasion and migration of glioma via targeting to regulate EZH2. Genes Genomics 10:1157–1165. https://doi.org/10.1007/s13258-021-01117-9
Ichimura K, Pearson DM, Kocialkowski S et al (2009) IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro Oncol 4:341–347. https://doi.org/10.1215/15228517-2009-025
Jo S, Lee H, Kim S et al (2011) Inhibition of PCGF2 enhances granulocytic differentiation of acute promyelocytic Leukemia cell line HL-60 via induction of HOXA7. Biochem Biophys Res Commun 1–2:86–91. https://doi.org/10.1016/j.bbrc.2011.10.152
Jo S, Lee H, Kim S et al (2013) Korean red ginseng extract induces proliferation to differentiation transition of human acute promyelocytic Leukemia cells via MYC-SKP2-CDKN1B axis. J Ethnopharmacol 2:700–707. https://doi.org/10.1016/j.jep.2013.09.036
Kim KH, Roberts CW (2016) Targeting EZH2 in cancer. Nat Med 2:128–134. https://doi.org/10.1038/nm.4036
Kim W, Bird GH, Neff T et al (2013a) Targeted disruption of the EZH2-EED complex inhibits EZH2-dependent cancer. Nat Chem Biol 10:643–650. https://doi.org/10.1038/nchembio.1331
Kim E, Kim M, Woo DH et al (2013b) Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell 6:839–852. https://doi.org/10.1016/j.ccr.2013.04.008
Kissler S, Stern P, Takahashi K et al (2006) In vivo RNA interference demonstrates a role for Nramp1 in modifying susceptibility to type 1 Diabetes. Nat Genet 4:479–483. https://doi.org/10.1038/ng1766
Koumangoye RB, Andl T, Taubenslag KJ et al (2015) SOX4 interacts with EZH2 and HDAC3 to suppress microRNA-31 in invasive Esophageal cancer cells. Mol Cancer 24. https://doi.org/10.1186/s12943-014-0284-y
Li LY (2014) EZH2: novel therapeutic target for human cancer. Biomed (Taipei). https://doi.org/10.7603/s40681-014-0001-6. 1:1
Article PubMed Central Google Scholar
Li T, Luo W, Liu K et al (2015) miR-31 promotes proliferation of colon Cancer cells by targeting E2F2. Biotechnol Lett 3:523–532. https://doi.org/10.1007/s10529-014-1715-y
Liang J, Zubovitz J, Petrocelli T et al (2002) PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med 10:1153–1160. https://doi.org/10.1038/nm761
Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO classification of tumors of the Central Nervous System: a summary. Neuro Oncol 8:1231–1251. https://doi.org/10.1093/neuonc/noab106
Macdonald JI, Dick FA (2012) Posttranslational modifications of the retinoblastoma Tumor suppressor protein as determinants of function. Genes Cancer 11–12:619–633. https://doi.org/10.1177/1947601912473305
Mineura K, Ishiyama Y, Kowada M (1992) Development of resistance to antitumor chloroethylnitrosoureas in vitro in Brain Tumor cells. Acta Oncol 7:755–759. https://doi.org/10.3109/02841869209083866
Miranda TB, Cortez CC, Yoo CB et al (2009) DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol Cancer Ther 6:1579–1588. https://doi.org/10.1158/1535-7163.MCT-09-0013
Montagnoli A, Fiore F, Eytan E et al (1999) Ubiquitination of p27 is regulated by cdk-dependent phosphorylation and trimeric complex formation. Genes Dev 9:1181–1189. https://doi.org/10.1101/gad.13.9.1181
Nadiminty N, Tummala R, Lou W et al (2012) MicroRNA let-7c suppresses androgen receptor expression and activity via regulation of myc expression in Prostate cancer cells. J Biol Chem 2:1527–1537. https://doi.org/10.1074/jbc.M111.278705
Natsume A, Ito M, Katsushima K et al (2013) Chromatin regulator PRC2 is a key regulator of epigenetic plasticity in glioblastoma. Cancer Res 14:4559–4570. https://doi.org/10.1158/0008-5472.CAN-13-0109
Omuro A, DeAngelis LM (2013) Glioblastoma and other malignant gliomas: a clinical review. JAMA 17:1842–1850. https://doi.org/10.1001/jama.2013.280319
Orian JM, Vasilopoulos K, Yoshida S et al (1992) Overexpression of multiple oncogenes related to histological grade of astrocytic glioma. Br J Cancer 1:106–112. https://doi.org/10.1038/bjc.1992.225
Park SC, Lee JM (2022) Ezh2 promotes TRbeta lysine methylation-mediated degradation in hepatocellular carcinoma. Genes Genomics 3:369–377. https://doi.org/10.1007/s13258-021-01196-8
Parreno V, Martinez AM, Cavalli G (2022) Mechanisms of polycomb group protein function in cancer. Cell Res 3:231–253. https://doi.org/10.1038/s41422-021-00606-6
Pasini D, Bracken AP, Jensen MR et al (2004) Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J 20:4061–4071. https://doi.org/10.1038/sj.emboj.7600402
Comments (0)